留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地基大口径拼接镜面主动控制技术综述

范文强 王志臣 陈宝刚 李洪文 陈涛 安其昌 范磊

范文强, 王志臣, 陈宝刚, 李洪文, 陈涛, 安其昌, 范磊. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学(中英文), 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032
引用本文: 范文强, 王志臣, 陈宝刚, 李洪文, 陈涛, 安其昌, 范磊. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学(中英文), 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032
FAN Wen-qiang, WANG Zhi-chen, CHEN Bao-gang, LI Hong-wen, CHEN Tao, AN Qi-chang, FAN Lei. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032
Citation: FAN Wen-qiang, WANG Zhi-chen, CHEN Bao-gang, LI Hong-wen, CHEN Tao, AN Qi-chang, FAN Lei. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032

地基大口径拼接镜面主动控制技术综述

doi: 10.37188/CO.2020-0032
基金项目: 中国科学院青年创新促进会(No. 2020221),白求恩医学工程与仪器中心基金项目(No. BQEGCZX2019042),国家自然科学基金项目(No. 11703026, No. 11803034)资助
详细信息
    作者简介:

    范文强(1993—),男,江西鹰潭人,硕士,研究实习员,2018年于华中科技大学获得硕士学位,主要从事大型光电望远镜光机结构和拼接镜面主动控制技术的研究。E-mail:fwqhust@163.com

    安其昌(1988—),男,山西太原人,博士,助理研究员,中国科学院青年创新促进会成员,2011年于中国科学技术大学获得工学学士学位,2018 年于中国科学院大学获得博士学位,研究方向为大口径光机系统检测装调。Email:anjj@mail.ustc.edu.cn

    通讯作者:

    安其昌(1988—),男,山西太原人,博士,助理研究员,中国科学院青年创新促进会成员,2011年于中国科学技术大学获得工学学士学位,2018 年于中国科学院大学获得博士学位,研究方向为大口径光机系统检测装调。Email:anjj@mail.ustc.edu.cn

  • 中图分类号: TP394.1;TH691.9

Review of the active control technology of large aperture ground telescopes with segmented mirrors

Funds: Supported by Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020221), Bethune Medical Engineering and Instrument Center Foundation (No. BQEGCZX2019042), National Natural Science Foundation of China (No. 11703026, No. 11803034)
More Information
  • 摘要: 拼接镜面技术是光学合成孔径望远镜的三种实现方式之一,是未来大口径望远镜的重要研究方向。由于拼接镜面主动控制系统直接影响拼接镜面等效大口径镜面的光学性能,本文着眼于地基大口径望远镜的拼接镜面主动控制技术,由地基拼接镜面望远镜的发展过程展开,阐述拼接镜面主动控制系统的主要结构,对国内外拼接镜面主动控制系统发展概况进行分析和总结。归纳了拼接镜面主动控制系统实现主动调整和主动保持的关键技术,明确了深度学习理论在闭环控制,共相检测与校正和系统级仿真建模技术中的逐步应用和未来发展方向,为国内下一代地基大口径望远镜拼接镜面的控制方案设计提供相应的指导。

     

  • 图 1  拼接镜面望远镜系统结构图[14]

    Figure 1.  Structure diagram of the segmented mirror telescope system[14]

    图 2  拼接镜面主动控制系统框图[15]

    Figure 2.  Block diagram of the segmented mirror active control system[15]

    图 3  Keck望远镜主镜拼接形式[16]

    Figure 3.  Segment form of the main mirror of the Keck telescope[16]

    图 4  Keck望远镜子镜定位系统[16]

    Figure 4.  Segment position system of the Keck telescope[16]

    图 5  Keck望远镜拼接主镜主动控制系统控制回路图[16]

    Figure 5.  Control loop diagram of the active control system for segmented mirror of Keck telescope[16]

    图 6  HET望远镜结构图[6]

    Figure 6.  Structure diagram of the HET telescope[6]

    图 7  HET望远镜拼接镜面主动控制系统组成[18]

    Figure 7.  Configuration of the active control system for the segmented mirror of the HET telescope[18]

    图 8  SALT望远镜对准和保持系统控制流程图[22]

    Figure 8.  Control flow diagram of the alignment and maintenance system of the SALT telescope[22]

    图 9  加那利望远镜分布式可扩展实时控制系统架构图[26]

    Figure 9.  Architecture diagram of the distributed extensible real-time control system for the GTC telescope[26]

    图 10  LAMOST望远镜结构图[9]

    Figure 10.  Structure diagram of the LAMOST telescope[9]

    图 11  LAMOST望远镜主动光学系统的共焦主动调整原理图[27-28]

    Figure 11.  Principle diagram of the active adjustment mechanism of active optical system in LAMOST telescope[27-28]

    图 12  TMT望远镜拼接镜面主动保持系统控制模型图[31]

    Figure 12.  Control model diagram of active maintenance system of segmented mirror in TMT telescope[31]

    图 13  E-ELT望远镜拼接镜面主动控制系统框图[36]

    Figure 13.  Block diagram of active control system for segmented mirror in E-ELT telescope[36]

  • [1] 周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38. doi: 10.3788/co.20171001.0025

    ZHOU CH H, WANG ZH L, ZHU F. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25-38. (in Chinese) doi: 10.3788/co.20171001.0025
    [2] KURITA M, OHMORI H, KUNDA M, et al. Light-weight telescope structure optimized by genetic algorithm[J]. Proceedings of SPIE, 2010, 7733: 77333E.
    [3] 刘忠, 邓元勇, 杨德华, 等. 中国巨型太阳望远镜[J]. 中国科学: 物理学 力学 天文学,2019,49(5):059604.

    LIU ZH, DENG Y Y, YANG D H, et al. Chinese giant solar telescope[J]. Scientia Sinica Physica,Mechanica &Astronomica, 2019, 49(5): 059604. (in Chinese)
    [4] BERNSTEIN R A, MCCARTHY P J, RAYBOULD K, et al. Overview and status of the giant Magellan telescope project[J]. Proceedings of SPIE, 2014, 9145: 91451C.
    [5] NELSON J E, GILLINGHAM P R. Overview of the performance of the W. M. Keck Observatory[J]. Proceedings of SPIE, 1994, 2199: 82-93. doi: 10.1117/12.176154
    [6] RAMSEY L W, ADAMS M T, BARNES T G, et al. Early performance and present status of the Hobby-Eberly Telescope[J]. Proceedings of SPIE, 1998, 3352: 34-42. doi: 10.1117/12.319287
    [7] STOBIE R, MEIRING J G, BUCKLEY D A H. Design of the southern African large telescope (SALT)[J]. Proceedings of SPIE, 2000, 4003: 355-362. doi: 10.1117/12.391525
    [8] CASTRO LOPEZ-TARRUELLA F J, FERNANDEZ IBARZ J M, ANDERSEN T. Global model of the Gran Telescopio canarias[J]. Proceedings of SPIE, 2002, 4757: 93-102. doi: 10.1117/12.489823
    [9] GONG X F, CUI X Q, CHEN H Y, et al. Design and analysis of support system of the LAMOST primary mirror[J]. Proceedings of SPIE, 2003, 4837: 667-674. doi: 10.1117/12.456769
    [10] NELSON J, SANDERS G H. The status of the Thirty Meter Telescope project[J]. Proceedings of SPIE, 2008, 70121: 70121A.
    [11] MCPHERSON A, SPYROMILIO J, KISSLER-PATIG M, et al. E-ELT update of project and effect of change to 39m design[J]. Proceedings of SPIE, 2012, 8444: 84441F.
    [12] PARIHAR P P, DESHMUKH P, JACOB A, et al. Prototype segmented mirror telescope: a pathfinder of India's Large Optical-NIR telescope project[J]. Proceedings of SPIE, 2018, 10700: 107001A.
    [13] CUI X Q, ZHU Y T. Chinese Large Optic/IR Telescope (LOT): planning for the next decade[J]. Proceedings of SPIE, 2016, 9906: 990607.
    [14] PREUMONT A, BASTAITS R, RODRIGUES G. Scale effects in active optics of large segmented mirrors[J]. Mechatronics, 2009, 19(8): 1286-1293. doi: 10.1016/j.mechatronics.2009.08.005
    [15] 陆金娴. 光学镜面位姿检测与主动校正方法研究[D]. 南京: 南京航空航天大学, 2019.

    LU J X. Research on optical mirror position detection and active correction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese).
    [16] JARED R C, ARTHUR A A, ANDREAE S, et al. W. M. Keck Telescope segmented primary mirror active control system[J]. Proceedings of SPIE, 1990, 1236: 996-1008. doi: 10.1117/12.19266
    [17] CHANAN G A, NELSON J E, MAST T S, et al. W. M. Keck Telescope phasing camera system[J]. Proceedings of SPIE, 1994, 2198: 1139-1150. doi: 10.1117/12.176697
    [18] KRABBENDAM V L, SEBRING T A, RAY F B, et al. Development and performance of Hobby-Eberly Telescope 11-m segmented mirror[J]. Proceedings of SPIE, 1998, 3352: 436-445. doi: 10.1117/12.319265
    [19] ADAMS M T, PALUNAS P, BOOTH J A, et al. Hobby-Eberly Telescope segment alignment maintenance system[J]. Proceedings of SPIE, 2003, 4837: 693-701. doi: 10.1117/12.458006
    [20] HILL G J, DRORY N, GOOD J M, et al. Completion and performance of the Hobby-Eberly telescope wide field upgrade[J]. Proceedings of SPIE, 2018, 10700: 107000P.
    [21] HÄUSER M, RICHTER J, KRIEL H, et al. Upgrade of the HET segment control system, utilizing state-of-the-art, decentralized and embedded system controllers[J]. Proceedings of SPIE, 2016, 9906: 990602. doi: 10.1117/12.2232410
    [22] SWIEGERS J, GAJJAR H. Completion of the Southern African Large Telescope (SALT) primary mirror system[J]. Proceedings of SPIE, 2004, 5489: 881-891. doi: 10.1117/12.551410
    [23] WIRTH A, GONSIOROWSKI T, ROBERTS J, et al. Developing and testing an optical alignment system for SALT’s segmented primary mirror[J]. Proceedings of SPIE, 2004, 5489: 892-902. doi: 10.1117/12.551425
    [24] SWIEGERS J, GAJJAR H, ROZIERE D, et al. A unique edge sensing system for aligning SALT's primary mirror segments[J]. Proceedings of SPIE, 2004.
    [25] STRYDOM O J, LOVE J, GAJJAR H. Results from bonding of the SALT primary mirror edge sensors[J]. Proceedings of SPIE, 2016, 9912: 991244. doi: 10.1117/12.2233101
    [26] BUCKLEY D A H, BUOUS S, GAJJAR H, et al. A novel optical sensor for mirror edge sensing[J]. Proceedings of SPIE, 2010, 7739: 773912. doi: 10.1117/12.858131
    [27] LEFORT B, CASTRO J. The GTC primary mirror control system[J]. Proceedings of SPIE, 2008, 7019: 70190I.
    [28] FUERTES J M, DE MIGUEL S, VILLA R, et al.. Dynamic analysis of a segmented telescope test bed[C]. Proceedings of 1997 European Control Conference (ECC), IEEE, 1997: 2898-2903.
    [29] XU X Q, XU L ZH, JIN G P. Overview of LAMOST control system[J]. Proceedings of SPIE, 2003, 4837: 484-493. doi: 10.1117/12.456722
    [30] CUI X Q, SU D Q, WANG Y N, et al. The optical performance of LAMOST telescope[J]. Proceedings of SPIE, 2010, 7733: 773309. doi: 10.1117/12.856686
    [31] SU D Q, CUI X Q. Active optics in LAMOST[J]. Chinese Journal of Astronomy and Astrophysics, 2004, 4(1): 1-9. doi: 10.1088/1009-9271/4/1/1
    [32] ZHANG Y. Progress of LAMOST wavefront sensing[J]. Proceedings of SPIE, 2008, 7012: 70123H.
    [33] MACMYNOWSKI D G, THOMPSON P M, SHELTON J C, et al. Control system modeling for the thirty meter telescope primary mirror[J]. Proceedings of SPIE, 2011, 8336: 83360R. doi: 10.1117/12.914941
    [34] LORELL K R, AUBRUN J N, CLAPPIER R R, et al. Design of a prototype primary mirror segment positioning actuator for the Thirty Meter Telescope[J]. Proceedings of SPIE, 2006, 6267: 62672T. doi: 10.1117/12.672917
    [35] TROY M, CHANAN G, MICHAELS S, et al. A conceptual design for the Thirty Meter Telescope alignment and phasing system[J]. Proceedings of SPIE, 2008, 7012: 70120Y. doi: 10.1117/12.788560
    [36] DIMMLER M, ERM T, BAUVIR B, et al. E-ELT primary mirror control system[J]. Proceedings of SPIE, 2008, 7012: 70121O.
    [37] THOMPSON P M, MACMYNOWSKI D G, REGEHR M W, et al. Servo design and analysis for the Thirty Meter Telescope primary mirror actuators[J]. Proceedings of SPIE, 2010, 7733: 77332F. doi: 10.1117/12.857371
    [38] 李爱华, 周国华, 李国平, 等. 射电望远镜主动反射面系统的控制[J]. 光学 精密工程,2016,24(7):1711-1718.

    LI A H, ZHOU G H, LI G P, et al. Control of active reflector system for radio telescope[J]. Optics and Precision Engineering, 2016, 24(7): 1711-1718. (in Chinese)
    [39] WITVOET G, DEN BREEJE R, NIJENHUIS J, et al. Dynamic analysis and control of mirror segment actuators for the European Extremely Large Telescope[J]. Journal of Astronomical Telescopes,Instruments,and Systems, 2015, 1(1): 019003. doi: 10.1117/1.JATIS.1.1.019003
    [40] DESHMUKH P G, PARIHAR P, BALASUBRAMANIAM K A, et al. Dynamic loading assembly for testing actuators of segmented mirror telescope[J]. Journal of Astronomical Instrumentation, 2017, 6(3): 1750006. doi: 10.1142/S2251171717500064
    [41] 王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程,2018,26(10):2484-2492. doi: 10.3788/OPE.20182610.2484

    WANG ZH Y, JIA G X. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Optics and Precision Engineering, 2018, 26(10): 2484-2492. (in Chinese) doi: 10.3788/OPE.20182610.2484
    [42] SEDGHI B, MULLER M, BAUVIR B. Dynamical simulation of E-ELT segmented primary mirror[J]. Proceedings of SPIE, 2011, 8336: 83360D.
    [43] 郭泰, 戴懿纯, 杨德华, 等. 环形拼接太阳望远镜主镜控制系统的频率特性[J]. 光学学报,2018,38(11):1122001. doi: 10.3788/AOS201838.1122001

    GUO T, DAI Y CH, YANG D H, et al. Frequency characteristics of primary mirror control system in segmented ring solar telescope[J]. Acta Optica Sinica, 2018, 38(11): 1122001. (in Chinese) doi: 10.3788/AOS201838.1122001
    [44] XU ZH X, YANG P, HU K, et al. Deep learning control model for adaptive optics systems[J]. Applied Optics, 2019, 58(8): 1998-2009. doi: 10.1364/AO.58.001998
    [45] CHANAN G, TROY M, DEKENS F, et al. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm[J]. Applied Optics, 1998, 37(1): 140-155. doi: 10.1364/AO.37.000140
    [46] CHANAN G, OHARA C, TROY M. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 2000, 39(25): 4706-4714. doi: 10.1364/AO.39.004706
    [47] 林旭东, 王建立, 刘欣悦, 等. 拼接镜主动光学共相实验[J]. 光学 精密工程,2010,18(7):1520-1528.

    LIN X D, WANG J L, LIU X Y, et al. Co-phase experiment of active optics for segmented-mirrors[J]. Optics and Precision Engineering, 2010, 18(7): 1520-1528. (in Chinese)
    [48] CHANAN G, TROY M, SIRKO E. Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared[J]. Applied Optics, 1999, 38(4): 704-713. doi: 10.1364/AO.38.000704
    [49] CHANAN G A, TROY M, OHARA C M. Phasing the primary mirror segments of the Keck telescopes: a comparison of different techniques[J]. Proceedings of SPIE, 2000, 4003: 188-202. doi: 10.1117/12.391510
    [50] 郑彬, 陈永和, 傅雨田. 拼接式反射镜共焦误差检测[J]. 光学 精密工程,2019,27(1):26-33. doi: 10.3788/OPE.20192701.0026

    ZHENG B, CHEN Y H, FU Y T. Co-focus error detection of segmented mirrors[J]. Optics and Precision Engineering, 2019, 27(1): 26-33. (in Chinese) doi: 10.3788/OPE.20192701.0026
    [51] LI B, YU W H, CHEN M, et al. Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm[J]. Applied Optics, 2017, 56(32): 8871-8879. doi: 10.1364/AO.56.008871
    [52] BONNET H, ESSELBORN M, KORNWEIBEL N, et al. Fast optical re-phasing of segmented primary mirrors[J]. Proceedings of SPIE, 2014, 9145: 91451U.
    [53] 李斌, 刘燕德, 谢锋云. 拼接镜新型粗共相检测方法[J]. 光学 精密工程,2018,26(11):2647-2653. doi: 10.3788/OPE.20182611.2647

    LI B, LIU Y D, XIE F Y. Coarse co-phasing detection of segmented mirrors[J]. Optics and Precision Engineering, 2018, 26(11): 2647-2653. (in Chinese) doi: 10.3788/OPE.20182611.2647
    [54] SIMAR J F, STOCKMAN Y, SURDEJ J. Smart co-phasing system for segmented mirror telescopes[J]. Proceedings of SPIE, 2016, 9906: 99065F.
    [55] LI D Q, XU SH Y, WANG D, et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2019, 44(5): 1170-1173. doi: 10.1364/OL.44.001170
    [56] 宣丽, 李大禹, 刘永刚. 液晶自适应光学在天文学研究中的应用展望[J]. 液晶与显示,2015,30(1):1-9.

    XUAN L, LI D Y, LIU Y G. Prospect of liquid crystal adaptive optics in astronomy application[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 1-9. (in Chinese)
    [57] 李大禹. 基于多GPU的液晶自适应光学波前处理器[J]. 液晶与显示,2016,31(5):491-496. doi: 10.3788/YJYXS20163105.0491

    LI D Y. Liquid crystal adaptive optics wavefront processor based on multi-GPU[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(5): 491-496. (in Chinese) doi: 10.3788/YJYXS20163105.0491
    [58] 廖劲峰, 丁亚林, 姚园. 机载折反式光学系统的无热化设计[J]. 液晶与显示,2019,34(1):39-46. doi: 10.3788/YJYXS20193401.0039

    LIAO J F, DING Y L, YAO Y. A thermalization design of airborne mirror-lens optical system[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 39-46. (in Chinese) doi: 10.3788/YJYXS20193401.0039
  • 加载中
图(13)
计量
  • 文章访问数:  2359
  • HTML全文浏览量:  790
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-04-24
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!