留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.9~1.0 μm近红外连续光纤激光器的研究进展

党文佳 李哲 卢娜 李玉婷 张蕾 田晓

党文佳, 李哲, 卢娜, 李玉婷, 张蕾, 田晓. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学(中英文), 2021, 14(2): 264-274. doi: 10.37188/CO.2020-0193
引用本文: 党文佳, 李哲, 卢娜, 李玉婷, 张蕾, 田晓. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学(中英文), 2021, 14(2): 264-274. doi: 10.37188/CO.2020-0193
DANG Wen-jia, LI Zhe, LU Na, LI Yu-ting, ZHANG Lei, TIAN Xiao. Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. doi: 10.37188/CO.2020-0193
Citation: DANG Wen-jia, LI Zhe, LU Na, LI Yu-ting, ZHANG Lei, TIAN Xiao. Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. doi: 10.37188/CO.2020-0193

0.9~1.0 μm近红外连续光纤激光器的研究进展

doi: 10.37188/CO.2020-0193
基金项目: 陕西省自然科学基础研究计划资助项目(No. 2019JQ-914);陕西省创新能力支撑计划项目(No. 2019KRM093);陕西省教育厅专项科研计划项目(No. 17JK0394,No. 19JK0429);陕西省科技厅重点研发计划项目(No. 2018ZDXM-GY-051)
详细信息
    作者简介:

    党文佳(1983—),女,陕西西安人,博士,讲师,2015年于西安电子科技大学获得工学博士学位,主要从事光外差探测、光纤激光器及光电子技术等方面的研究。E-mail:wenjia_dang@126.com

  • 中图分类号: O436

Research progress of 0.9 ~ 1.0 μm near-infrared continuous-wave fiber lasers

Funds: Supported by the Natural Science Basic Research Program of Shaanxi (No. 2019JQ-914); Innovation Capability Support Program of Shaanxi (No. 2019KRM093); Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 17JK0394, No. 19JK0429); Key Research and Development Program Fund of Shaanxi Science and Technology Department (No. 2018ZDXM-GY-051)
More Information
  • 摘要: 波长为0.9~1.0 μm的近红外连续光纤激光器在高功率蓝光和紫外激光产生、高功率单模泵浦源、生物医学以及激光雷达等领域具有重要的应用前景,成为近年来的一个研究热点。目前,0.9~1.0 μm光纤激光器的增益机制主要有稀土离子增益和非线性效应增益,本文详细梳理了基于这两类增益机制的0.9~1.0 μm连续光纤激光器的研究进展,并深入分析了各类激光器存在的技术瓶颈及解决途径,最后对0.9~1.0 μm光纤激光器的发展趋势和应用前景进行了展望。

     

  • 图 1  (a)掺钕光纤激光器系统原理图;(b)双波长泵浦掺钕光纤激光器的输出功率[13]

    Figure 1.  (a) Schematic diagram Nd-doped fiber laser; (b) output power of dual wavelength pumped Nd fiber laser[13]

    图 2  (a)实验结构示意图;(b)输出功率与注入抽运光功率的关系;(c)最高输出功率时的光谱图[26]

    Figure 2.  (a) Diagram of the experimental setup; (b) output power versus pump power; (c) spectrum at the highest output power[26]

    图 3  (a)光纤激光器示意图;(b)测量的输出功率与泵浦功率的关系;(c)不同功率下的输出光谱[39]

    Figure 3.  (a) Schematic diagram of the monolithic fiber laser; (b) measured output versus pump power; (c) measured output spectra for the double-pumped laser under various output powers[39]

    图 4  (a)光纤激光器系统结构;(b) 976 nm激光在不同功率下的输出光谱;(c) 976 nm激光输出功率[41]

    Figure 4.  (a) Configuration of the monolithic fiber laser; (b) output spectra for 976 nm laser at different average output powers; (c) output power for the 976 nm signal[41]

    图 5  (a) LD直接泵浦的全光纤拉曼激光器结构;(b)不同渐变折射率光纤长度下的拉曼光纤激光输出功率[53]

    Figure 5.  (a) All-fiber configurations of Raman fiber lasers with direct LD pumping; (b) output power of the Raman fiber laser at different GRIN fiber lengths versus input pump power[53]

    图 6  (a) LD直接泵浦的级联全光纤随机激光器;(b)二阶随机光纤激光输出功率与输入泵浦功率的关系[64]

    Figure 6.  (a) All-fiber configuration of the cascaded random fiber laser with direct LD pumping; (b) measured output power at 2nd-order random lasing wavelengths versus the input pump power[64]

    表  1  976 nm单频光纤激光器研究进展

    Table  1.   Research progress of the 976 nm single frequency fiber laser

    年份研究单位波长/nm功率/W参考文献
    2012NP Photonics9760.143
    2013University of Arizona9760.3544
    2016976445
    20179763.4146
    201897610.147
    下载: 导出CSV
  • [1] JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [2] ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi: 10.1142/S0217979214420090
    [3] 党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学,2020,13(4):676-694. doi: 10.37188/CO.2019-0208

    DANG W J, LI ZH, LI Y T, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi: 10.37188/CO.2019-0208
    [4] LIN H Q, FENG Y J, FENG Y T, et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 2018, 43(13): 3080-3083. doi: 10.1364/OL.43.003080
    [5] EHRENREICH T, LEVEILLE R, MAJID I, et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 2010, 7580: 758016. doi: 10.1117/12.842404
    [6] 施旗, 程红, 吕景文, 等. 掺钕磷酸盐激光玻璃的光谱特性[J]. 发光学报,2005,26(3):359-364. doi: 10.3321/j.issn:1000-7032.2005.03.015

    SHI Q, CHENG H, LÜ J W, et al. Spectroscopic properties of Nd3+-doped phosphate laser glasses[J]. Chinese Journal of Luminescence, 2005, 26(3): 359-364. (in Chinese) doi: 10.3321/j.issn:1000-7032.2005.03.015
    [7] 吴春婷, 常奥磊, 温雅, 等. 单掺Nd3+双波长全固态激光器研究进展[J]. 发光学报,2020,41(4):414-428. doi: 10.3788/fgxb20204104.0414

    WU CH T, CHANG A L, WEN Y, et al. Research progress of Nd3+-doped dual-wavelength all-solid-state laser[J]. Chinese Journal of Luminescence, 2020, 41(4): 414-428. (in Chinese) doi: 10.3788/fgxb20204104.0414
    [8] TER-MIKIRTYCHEV V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. Cham: Springer, 2014.
    [9] ALCOCK I P, FERGUSON A I, HANNA D C, et al. Continuous-wave oscillation of a monomode neodymium-doped fibre laser at 0.9 μm on the 4F324I92 transition[J]. Optics Communications, 1986, 58(6): 405-408. doi: 10.1016/0030-4018(86)90319-6
    [10] SOH D B S, YOO S W, NILSSON J, et al.. Cladding pumped Nd-doped fiber laser tunable from 908 to 938 nm[C]. Proceedings of Conference on Lasers and Electro-Optics, IEEE, 2004.
    [11] LAROCHE M, CADIER B, GILLES H, et al. 20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm[J]. Optics Letters, 2013, 38(16): 3065-3067. doi: 10.1364/OL.38.003065
    [12] LECONTE B, CADIER B, GILLES H, et al. Extended tunability of Nd-doped fiber lasers operating at 872~936 nm[J]. Optics Letters, 2015, 40(17): 4098-4101. doi: 10.1364/OL.40.004098
    [13] PAX P H, KHITROV V V, DRACHENBERG D R, et al. Scalable waveguide design for three-level operation in neodymium doped fiber laser[J]. Optics Express, 2016, 24(25): 28633-28647. doi: 10.1364/OE.24.028633
    [14] BARNINI A, LE CORRE K, KERVELLA L, et al. Low numerical aperature large-mode-area neodymium-doped fibers fabricated by SPCVD and ASD for laser operation near 920 nm[J]. Proceedings of SPIE, 2020, 11276: 112760L.
    [15] DÉLEN X, MARTIAL I, DIDIERJEAN J, et al. 34 W continuous wave Nd∶YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104(1): 1.
    [16] 住村和彦, 西浦匡则. 图解光纤激光器入门[M]. 宋鑫, 译. 北京: 机械工业出版社, 2013: 74-84.

    KAZUHIKO, SUMIMURA. Graphical Introduction to Fiber Lasers[M]. SONG X, trans. Beijing: China Machine Press, 2013: 74-84. (in Chinese)
    [17] 李海清, 廖雷, 刘超平, 等. 短波长输出的掺镱光纤及其激光器研究[J]. 华中科技大学学报(自然科学版),2017,45(6):5-9.

    LI H Q, LIAO L, LIU CH P, et al. Study on Yb-doped fiber of short-wavelength and its lasers[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2017, 45(6): 5-9. (in Chinese)
    [18] 张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤激光器研究[J]. 发光学报,2016,37(9):1071-1075. doi: 10.3788/fgxb20163709.1071

    ZHANG X X, GE T W, DING X, et al. Study of continuous fiber laser with distributed pump structure[J]. Chinese Journal of Luminescence, 2016, 37(9): 1071-1075. (in Chinese) doi: 10.3788/fgxb20163709.1071
    [19] HANNA D C, PERCIVAL R M, PERRY I R, et al. An ytterbium-doped monomode fibre laser: broadly tunable operation from 1·010 μm to 1·162 μm and three-level operation at 974 nm[J]. Journal of Modern Optics, 1990, 37(4): 517-525. doi: 10.1080/09500349014550601
    [20] ZENTENO L A, MINELLY J D, DEJNEKA M, et al.. 0.65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd∶YAG[C]. Proceedings of Advanced Solid State Lasers 2000, Optical Society of America, 2000: MD7.
    [21] ZOU S, LI P, WANG L, et al. 980 nm Yb-doped single-mode fiber laser and its frequency-doubling with BIBO[J]. Applied Physics B, 2009, 95(4): 685-690. doi: 10.1007/s00340-009-3511-2
    [22] BARTOLACCI C, LAROCHE M, GILLES H, et al.. All-fiber Yb-doped CW and pulsed laser sources operating near 980 nm[C]. Proceedings of Advanced Solid-State Photonics 2011, Optical Society of America, 2011: ATuB9.
    [23] 王争, 闫明鉴, 尹路, 等. 不同角度包层光剥离的理论与实验研究[J]. 中国光学,2019,12(5):1124-1130. doi: 10.3788/CO.20191205.1124

    WANG ZH, YAN M J, YIN L, et al. Stripping of cladding light at different angles: theoretical and experimental studies[J]. Chinese Optics, 2019, 12(5): 1124-1130. (in Chinese) doi: 10.3788/CO.20191205.1124
    [24] WANG Y SH, KE W W, MA Y, et al. The design and experiment research of high brightness all-fiberized ytterbium doped laser operating near 980 nm[J]. Proceedings of SPIE, 2015, 9671: 96710U.
    [25] YU Y, AN Y Y, CAO J Q, et al. Experimental study on all-fiberized continuous-wave Yb-doped fiber amplifier operating near 980 nm[J]. IEEE Photonics Technology Letters, 2016, 28(4): 398-401. doi: 10.1109/LPT.2015.2496623
    [26] 杜赫庭, 刘爱民, 曹涧秋, 等. 自主研发的976 nm波段全光纤激光器实现了100 W量级功率输出[J]. 强激光与粒子束,2019,31(10):72.

    DU H T, LIU A M, CAO J Q, et al. The self-developed 976 nm all-fiber laser achieves 100 W output power[J]. High Power Laser and Particle Beams, 2019, 31(10): 72. (in Chinese)
    [27] 李平雪, 张月. 980 nm掺镱光纤激光器综述[J]. 激光与光电子学进展,2017,54(7):36-47.

    LI P X, ZHANG Y. Review of 980 nm Yb-doped fiber laser[J]. Laser &Optoelectronics Progress, 2017, 54(7): 36-47. (in Chinese)
    [28] SELVAS R, SAHU J K, FU L B, et al. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm[J]. Optics Letters, 2003, 28(13): 1093-1095. doi: 10.1364/OL.28.001093
    [29] YLÄ-JARKKO K H, SELVAS R, SOH D B S, et al.. A 3.5 W 977 nm cladding-pumped jacketed air-clad ytterbium-doped fiber laser[C]. Proceedings of Advanced Solid-State Photonics 2003, Optical Society of America, 2003: 103.
    [30] RÖSER F, JAUREGUI C, LIMPERT J, et al. 94 W 980 nm high brightness Yb-doped fiber laser[J]. Optics Express, 2008, 16(22): 17310-17318. doi: 10.1364/OE.16.017310
    [31] BOULLET J, ZAOUTER Y, DESMARCHELIER R, et al. High power ytterbium-doped rod-type three-level photonic crystal fiber laser[J]. Optics Express, 2008, 16(22): 17891-17902. doi: 10.1364/OE.16.017891
    [32] ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823. doi: 10.1364/OE.21.013818
    [33] LI P X, ZHANG X X, LIU ZH, et al. Large-mode-area double-cladding photonic crystal fiber laser in the watt range at 980 nm[J]. Chinese Physics Letters, 2011, 28(8): 084206. doi: 10.1088/0256-307X/28/8/084206
    [34] HE J, WANG Z W, WU W D, et al. Short-length large-mode-area photonic crystal fiber laser operating at 978 nm[J]. Proceedings of SPIE, 2012, 8796: 87961V.
    [35] LEICH M, JÄGER M, GRIMM S, et al. Tapered large-core 976 nm Yb-doped fiber laser with 10 W output power[J]. Laser Physics Letters, 2014, 11(4): 045102. doi: 10.1088/1612-2011/11/4/045102
    [36] ALESHKINA S S, LEVCHENKO A E, MEDVEDKOV O I, et al. Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser[J]. IEEE Photonics Technology Letters, 2018, 30(1): 127-130. doi: 10.1109/LPT.2017.2778305
    [37] GU G CH, KONG F T, HAWKINS T, et al. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers[J]. Optics Express, 2014, 22(11): 13962-13968. doi: 10.1364/OE.22.013962
    [38] MATNIYAZ T, KALICHEVSKY-DONG M T, HAWKINS T W, et al.. Single-mode Yb-doped Double-clad All-solid Photonic Bandgap Fiber Laser Generating 27.8 W at 976 nm[C]. Proceedings of Advanced Solid State Lasers 2018, Optical Society of America, 2018: AM6A.28.
    [39] LI W S, MATNIYAZ T, GAFSI S, et al. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm[J]. Optics Express, 2019, 27(18): 24972-24977. doi: 10.1364/OE.27.024972
    [40] VALERO N, FERAL C, LHERMITE J, et al.. 29 W diffraction limited monolithic ytterbium doped fiber laser system operating at 976 nm in the continuous wave regime[C]. Proceedings of 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, IEEE, 2019: 1-1.
    [41] VALERO N, FERAL C, LHERMITE J, et al. 39 W narrow spectral linewidth monolithic ytterbium-doped fiber MOPA system operating at 976 nm[J]. Optics Letters, 2020, 45(6): 1495-1498. doi: 10.1364/OL.380713
    [42] 黄振鹏. 978 nm单频光纤激光器及其倍频研究[D]. 广州: 华南理工大学, 2018.

    HUANG ZH P. Research on the single-frequency fiber laser at 978 nm and its frequency doubling[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [43] ZHU X SH, SHI W, ZONG J, et al. 976 nm single-frequency distributed Bragg reflector fiber laser[J]. Optics Letters, 2012, 37(20): 4167-4169. doi: 10.1364/OL.37.004167
    [44] ZHU X SH, ZHU G W, SHI W, et al. 976 nm single-polarization single-frequency ytterbium-doped phosphate fiber amplifiers[J]. IEEE Photonics Technology Letters, 2013, 25(14): 1365-1368. doi: 10.1109/LPT.2013.2266113
    [45] WU J W, ZHU X SH, TEMYANKO V, et al.. Power scaling of single-frequency fiber amplifiers at 976 nm[C]. Proceedings of Science and Innovations 2016, Optical Society of America, 2016: SM1Q.5.
    [46] WU J W, ZHU X SH, TEMYANKO V, et al. Yb3+-doped double-clad phosphate fiber for 976 nm single-frequency laser amplifiers[J]. Optical Materials Express, 2017, 7(4): 1310-1316. doi: 10.1364/OME.7.001310
    [47] WU J, ZHU X, WEI H, et al. Power scalable 10 W 976 nm single-frequency linearly polarized laser source[J]. Optics Letters, 2018, 43(4): 951-954. doi: 10.1364/OL.43.000951
    [48] 冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光,2017,44(2):0201005. doi: 10.3788/CJL201744.0201005

    FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi: 10.3788/CJL201744.0201005
    [49] KABLUKOV S I, DONTSOVA E I, ZLOBINA E A, et al. An LD-pumped Raman fiber laser operating below 1 μm[J]. Laser Physics Letters, 2013, 10(8): 085103. doi: 10.1088/1612-2011/10/8/085103
    [50] ZLOBINA E A, KABLUKOV S I, SKVORTSOV M I, et al. 954 nm Raman fiber laser with multimode laser diode pumping[J]. Laser Physics Letters, 2016, 13(3): 035102. doi: 10.1088/1612-2011/13/3/035102
    [51] ZLOBINA E A, KABLUKOV S I, WOLF A A, et al. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode[J]. Optics Letters, 2017, 42(1): 9-12. doi: 10.1364/OL.42.000009
    [52] ZLOBINA E A, KABLUKOV S I, WOLF A A, et al. Generating high-quality beam in a multimode LD-pumped all-fiber Raman laser[J]. Optics Express, 2017, 25(11): 12581-12587. doi: 10.1364/OE.25.012581
    [53] EVMENOVA E A, KABLUKOV S I, NEMOV I N, et al. High-efficiency LD-pumped all-fiber Raman laser based on a 100 μm core graded-index fiber[J]. Laser Physics Letters, 2018, 15(9): 095101. doi: 10.1088/1612-202X/aacca7
    [54] KUZNETSOV A G, KABLUKOV S I, WOLF A A, et al. 976 nm all-fiber Raman laser with high beam quality at multimode laser diode pumping[J]. Laser Physics Letters, 2019, 16(10): 105102. doi: 10.1088/1612-202X/ab4281
    [55] TURITSYN S K, BABIN S A, EI-TAHER A E, et al. Random distributed feedback fibre laser[J]. Nature Photonics, 2010, 4(4): 231-235. doi: 10.1038/nphoton.2010.4
    [56] FOTIADI A A. An incoherent fibre laser[J]. Nature Photonics, 2010, 4(4): 204-205. doi: 10.1038/nphoton.2010.76
    [57] SUGAVANAM S, SOROKINA M, CHURKIN D V. Spectral correlations in a random distributed feedback fibre laser[J]. Nature Communications, 2017, 8: 15514. doi: 10.1038/ncomms15514
    [58] OGORODNIKOV L L, VERGELES S S. Intensity statistics in a long random fiber Raman laser[J]. Optics Letters, 2018, 43(4): 651-654. doi: 10.1364/OL.43.000651
    [59] ZHANG H W, HUANG L, SONG J X, et al. Quasi-kilowatt random fiber laser[J]. Optics Letters, 2019, 44(11): 2613-2616. doi: 10.1364/OL.44.002613
    [60] ZHANG L, JIANG H W, YANG X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611. doi: 10.1038/srep42611
    [61] 饶云江. 光纤随机激光器及其应用研究进展[J]. 光子学报,2019,48(11):1148002. doi: 10.3788/gzxb20194811.1148002

    RAO Y J. Research advances of random fiber lasers and its applications[J]. Acta Photonica Sinica, 2019, 48(11): 1148002. (in Chinese) doi: 10.3788/gzxb20194811.1148002
    [62] ZHANG L, WANG CH, LI ZH Y, et al. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity[J]. Optics Express, 2017, 25(10): 11306-11314. doi: 10.1364/OE.25.011306
    [63] BABIN S A, DONTSOVA E I, KABLUKOV S I. Random fiber laser directly pumped by a high-power laser diode[J]. Optics Letters, 2013, 38(17): 3301-3303. doi: 10.1364/OL.38.003301
    [64] EVMENOVA E A, KUZNETSOV A G, NEMOV I N, et al. 2nd-order random lasing in a multimode diode-pumped graded-index fiber[J]. Scientific Reports, 2018, 8(1): 17495. doi: 10.1038/s41598-018-35767-9
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1748
  • HTML全文浏览量:  638
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-27
  • 修回日期:  2020-12-09
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!