留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计

王丰璞 李新南 徐晨 黄亚

王丰璞, 李新南, 徐晨, 黄亚. 大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计[J]. 中国光学(中英文), 2021, 14(5): 1184-1193. doi: 10.37188/CO.2020-0218
引用本文: 王丰璞, 李新南, 徐晨, 黄亚. 大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计[J]. 中国光学(中英文), 2021, 14(5): 1184-1193. doi: 10.37188/CO.2020-0218
WANG Feng-pu, LI Xin-nan, XU Chen, HUANG Ya. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 2021, 14(5): 1184-1193. doi: 10.37188/CO.2020-0218
Citation: WANG Feng-pu, LI Xin-nan, XU Chen, HUANG Ya. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 2021, 14(5): 1184-1193. doi: 10.37188/CO.2020-0218

大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计

doi: 10.37188/CO.2020-0218
基金项目: 国家自然科学基金(No. 11627804)
详细信息
    作者简介:

    王丰璞(1990—),男,山西吕梁人,博士研究生,2013年于忻州师范学院获得学士学位,主要从事大口径非球面检测方面的研究。Email:fpwang@niaot.ac.cn

    李新南(1963—),男,江苏张家港人,硕士,研究员,博士生导师,1983年于华东工程学院获得学士学位,1991年于中国科学院紫金山天文台获得硕士学位,主要从事大口径天文光学非球面应用方面的研究。Email:xnli@niaot.ac.cn

  • 中图分类号: O439

Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation

Funds: Supported by National Natural Science Foundation of China (No. 11627804)
More Information
  • 摘要: 为了实现大口径、长焦距、批量化离轴镜面的高精度面形检验,本文提出了一种零位反衍补偿检测方案,采用计算全息和球面反射镜共同对离轴镜面法向像差进行补偿,检测光路波像差残差接近于零。检测方案为非轴对称离轴结构,设计了相应的全息对准光路,以保证检测光路装调切实可行。不同离轴量子镜检测光路参数完全一致,仅需更换相应位置计算全息片、调整待测镜空间姿态,即可实现不同类型镜面的快速批量化检验。误差分析结果表明,由补偿元件制造误差、光路失调、干涉仪面形测量重复性以及干涉仪标准球面波偏差引起的待测镜面形误差小于λ/40 (RMS值,λ=632.8 nm)。

     

  • 图 1  LOT拼接主镜

    Figure 1.  Splicing primary mirror of LOT

    图 2  编号14离轴子镜非球面偏离量分布

    Figure 2.  Aspheric deviation of No.14 off-axis segment

    图 3  计算全息和球面反射镜零位检测离轴非球面原理

    Figure 3.  Principle of off-axis aspheric surface detection by combining the CGH and a spherical mirror

    图 4  离轴子镜检测光路的像质评价结果。(a) 点列图;(b) 波像差

    Figure 4.  Image quality of off-axis mirror testing system. (a) Spot diagram; (b) wavefront map

    图 5  编号14离轴子镜检测光路焦点平面杂散光分布

    Figure 5.  Stray light distribution in focal plane of No.14 off-axis segment testing optical path

    图 6  CGH相位分布

    Figure 6.  CGH phase distribution

    图 7  不同离轴镜面主全息条纹图样。离轴量分别为:(a) 1247 mm; (b) 3741 mm; (c) 5715 mm

    Figure 7.  CGH fringe patterns of different off-axis segments (200 waves/fringe). Off-axis distance: (a) 1247 mm; (b) 3741 mm; (c) 5715 mm

    图 8  对准区域条纹图样

    Figure 8.  Fringe patterns of alignment CGHs

    图 9  对准光路示意图

    Figure 9.  Schematic diagram of optical path alignment

    表  1  主镜光学参数

    Table  1.   Optical parameters of the primary mirror

    ParametersROC/mDiameter/mConicSegment numbersSegment categories
    Values−38.412.799−0.98378438414
    下载: 导出CSV

    表  2  六边形子镜技术参数

    Table  2.   Technical parameters of hexagonal sub-mirror

    NumberOff-axis distance/mmOff-axis angle φ/(°)Vertex sag/mmBest fit sphere ROC/mmMaximum deviation/μm
    112471.860020.25384258.27
    637415.5647182.233858465.9
    1457158.4666425.3138821152.4
    下载: 导出CSV

    表  3  不同离轴子镜检测光路CGH空间频率、空间周期

    Table  3.   CGH spatial frequency and spatial period of different off-axis segment testing systems

    NumberElliptical etched area/mmSpatial frequency/mm−1Spatial period/μm
    x radiusy radiusMaxMinMaxMin
    134.232.161.514.668.316.3
    635.134.447.213.275.921.2
    1436.038.047.131.531.821.2
    下载: 导出CSV

    表  4  补偿元件加工误差及其波像差变化

    Table  4.   Fabrication errors of compensation elements and corresponding wavefront aberration variations

    Error typeError nameInternational processing statusFirst order RMS wavefront /nm
    CGH substrate errorTransmitted wavefront0.02λ5.784
    Thickness1 μm0.130
    Refraction index5×10−60.008
    CGH pattern fabrication errorEncoding0.05 μm1.492
    Pattern distortion0.1 μm2.985
    Etching depth1 %1.107
    Duty cycle0.5 %0
    Amplitude0.1 %0.026
    Spherical mirror fabrication errorSurface figure0.01λ6.328
    ROC0.01 %4.632
    RSSN/AN/A10.360
    下载: 导出CSV

    表  5  检测光路元件装调公差及波像差变化

    Table  5.   Element adjustment tolerance of the testing system and the wavefront aberration variation

    ElementTolerance (μm, arcsec)Wavefront error/nmTotal wavefront RMS/nm
    Zernike fringe coefficients
    Z4Z5Z6Z7Z8
    CGHdx10−0.0010.0010.001−0.0020.0010.008
    dy100.0050.0000.001−0.001−0.0430.017
    dz500.269−1.6050.001−0.019−8.8193.233
    tilt x50.020−0.141−0.0020.002−0.7720.283
    tilt y50.0010.0030.001−0.0040.0010.027
    tilt z5−0.003−0.0020.001−0.0020.0020.009
    spherical mirrordx100−0.0010.0000.0000.0000.0010.009
    dy100−0.0170.1250.003−0.0070.6580.239
    dz10000.207−1.2550.001−0.001−6.9662.526
    tilt x300.457−2.7840.000−0.004−15.3835.577
    tilt y30−0.002−0.021−0.0080.022−0.0890.126
    tilt z300.0000.0030.0000.0000.0010.008
    LOT segmentdx100−0.003−0.0020.0000.0000.0020.008
    dy1000.030−0.1790.002−0.001−1.0090.365
    Coefficients RSS/nm0.5713.4600.0090.03119.105N/A
    Wavefront RMS/nm0.3291.4120.0040.0116.7546.944
    下载: 导出CSV
  • [1] 刘强, 王欣, 黄庚华, 等. 大视场大相对孔径斜轴离轴三反望远镜的光学设计[J]. 光子学报,2019,48(3):0322002. doi: 10.3788/gzxb20194803.0322002

    LIU Q, WANG X, HUANG G H, et al. Optical design of wide field view and large relative aperture off-axis three-mirror reflective system with tilted optical axis[J]. Acta Photonica Sinica, 2019, 48(3): 0322002. (in Chinese) doi: 10.3788/gzxb20194803.0322002
    [2] NELSON J, SANDERS G H. The status of the Thirty Meter Telescope project[J]. Proceedings of SPIE, 2008, 7012: 70121A. doi: 10.1117/12.788238
    [3] TAMAI R, SPYROMILIO J. European extremely large telescope: progress report[C]. Proceedings of SPIE, 2014, 9145: 91451E.
    [4] SU D Q, LIANG M, YUAN X Y, et al. The optical system of the proposed Chinese 12-m optical/infrared telescope[J]. Monthly Notices of the Royal Astronomical Society, 2017, 469(4): 3792-3801. doi: 10.1093/mnras/stx956
    [5] 黄亚, 马骏, 朱日宏, 等. 基于计算全息的光学自由曲面测量不确定度分析[J]. 光学学报,2015,35(11):1112007. doi: 10.3788/AOS201535.1112007

    HUANG Y, MA J, ZHU R H, et al. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram[J]. Acta Optica Sinica, 2015, 35(11): 1112007. (in Chinese) doi: 10.3788/AOS201535.1112007
    [6] 李明, 罗霄, 薛栋林, 等. 考虑投影畸变设计大口径离轴非球面检测用计算全息图[J]. 光学 精密工程,2015,23(5):1246-1253. doi: 10.3788/OPE.20152305.1246

    LI M, LUO X, XUE D L, et al. Design of CGH for testing large off-axis asphere by considering mapping distortion[J]. Optics and Precision Engineering, 2015, 23(5): 1246-1253. (in Chinese) doi: 10.3788/OPE.20152305.1246
    [7] 曾雪锋, 闫锋, 薛栋林, 等. 计算全息图补偿检测离轴非球面中的投影畸变校正技术[J]. 中国激光,2013,40(11):1109003. doi: 10.3788/CJL201340.1109003

    ZENG X F, YAN F, XUE D L, et al. Distortion correction in testing of off-axis asphere with computer-generated hologram[J]. Chinese Journal of Lasers, 2013, 40(11): 1109003. (in Chinese) doi: 10.3788/CJL201340.1109003
    [8] 高松涛, 武东城, 苗二龙. 大偏离度非球面检测畸变校正方法[J]. 中国光学,2017,10(3):383-390. doi: 10.3788/co.20171003.0383

    GAO S T, WU D CH, MIAO E L. Distortion correcting method when testing large-departure asphere[J]. Chinese Optics, 2017, 10(3): 383-390. (in Chinese) doi: 10.3788/co.20171003.0383
    [9] 徐秋云, 徐晨, 李博, 等. 大口径批量化离轴非球面镜的检测光路设计[J]. 光学学报,2015,35(10):1012005. doi: 10.3788/AOS201535.1012005

    XU Q Y, XU CH, LI B, et al. Optical testing design for plenty of large off-axis aspherical mirrors[J]. Acta Optica Sinica, 2015, 35(10): 1012005. (in Chinese) doi: 10.3788/AOS201535.1012005
    [10] BURGE J H, ZHAO CH Y, DUBIN M. Measurement of aspheric mirror segments using Fizeau interferometry with CGH correction[J]. Proceedings of SPIE, 2010, 7739: 773902. doi: 10.1117/12.857816
    [11] ZHAO CH Y, ZEHNDER R, BURGE J H, et al. Testing an off-axis parabola with a CGH and a spherical mirror as null lens[J]. Proceedings of SPIE, 2005, 5869: 586911. doi: 10.1117/12.615465
    [12] ZEHNDER R, BURGE J H, ZHAO CH Y. Use of computer generated holograms for alignment of complex null correctors[J]. Proceedings of SPIE, 2006, 6273: 62732S. doi: 10.1117/12.672139
    [13] LI SH J, ZHANG J, LIU W G, et al. Measurement investigation of an off-axis aspheric surface via a hybrid compensation method[J]. Applied Optics, 2018, 57(28): 8220-8227. doi: 10.1364/AO.57.008220
    [14] LINDLEIN N. Analysis of the disturbing diffraction orders of computer-generated holograms used for testing optical aspherics[J]. Applied Optics, 2001, 40(16): 2698-2708. doi: 10.1364/AO.40.002698
    [15] PENG J T, REN J Y, ZHANG X X, et al. Analytical investigation of the parasitic diffraction orders of tilt carrier frequency computer-generated holograms[J]. Applied Optics, 2015, 54(13): 4033-4041. doi: 10.1364/AO.54.004033
    [16] PENG J T, CHEN ZH, ZHANG X X, et al. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics[J]. Applied Optics, 2015, 54(24): 7433-7441. doi: 10.1364/AO.54.007433
    [17] 何宇航, 李强, 高波, 等. 基于计算全息元件的大口径非球面透镜透射波前检测方法[J]. 激光与光电子学进展,2019,56(2):021202.

    HE Y H, LI Q, GAO B, et al. Measurement of the transmission wavefront of a large-aperture aspheric lens based on computer-generated hologram[J]. Laser &Optoelectronics Progress, 2019, 56(2): 021202. (in Chinese)
    [18] 高松涛, 武东城, 于长淞. 用于高精度非球面面形检测的计算全息图的设计[J]. 激光与光电子学进展,2016,53(9):090901.

    GAO S T, WU D CH, YU CH S. Computer-generated hologram design for high-precision aspherical surface testing[J]. Laser &Optoelectronics Progress, 2016, 53(9): 090901. (in Chinese)
    [19] BURGE J H, KOT L B, MARTIN H M, et al. Design and analysis for interferometric measurements of the GMT primary mirror segments[J]. Proceedings of SPIE, 2006, 6273: 62730M. doi: 10.1117/12.672484
    [20] ZHOU P, BURGE J H. Fabrication error analysis and experimental demonstration for computer-generated holograms[J]. Applied Optics, 2007, 46(5): 657-663. doi: 10.1364/AO.46.000657
    [21] ZHOU P. Error analysis and data reduction for interferometric surface measurements[D]. University of Arizona, 2009: 135-179.
    [22] ZHAO CH Y, BURGE J H. Optical testing with computer generated holograms: comprehensive error analysis[J]. Proceedings of SPIE, 2013, 8838: 88380H.
    [23] 费业泰. 误差理论与数据处理[M]. 第7版. 北京: 机械工业出版社, 2015: 59-99.

    FEI Y T. Error Theory and Data Processing[M]. 7th ed. Beijing: China Machine Press, 2015: 59-99. (in Chinese)
    [24] 徐德衍, 王青, 高志山, 等. 现行光学元件检测与国际标准[M]. 北京: 科学出版社, 2009: 25-59.

    XU D Y, WANG Q, GAO ZH SH, et al.. Current Optical Component Inspection and International Standards[M]. Beijing: Science Press, 2009: 25-59. (in Chinese)
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  1109
  • HTML全文浏览量:  462
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-07
  • 网络出版日期:  2021-03-27
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!