留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3+对石墨烯氧化物荧光淬灭机理的研究

李正顺 王岩 王雷 王海宇

李正顺, 王岩, 王雷, 王海宇. Fe3+对石墨烯氧化物荧光淬灭机理的研究[J]. 中国光学(中英文), 2016, 9(5): 569-578. doi: 10.3788/CO.20160905.0569
引用本文: 李正顺, 王岩, 王雷, 王海宇. Fe3+对石墨烯氧化物荧光淬灭机理的研究[J]. 中国光学(中英文), 2016, 9(5): 569-578. doi: 10.3788/CO.20160905.0569
LI Zheng-shun, WANG Yan, WANG Lei, WANG Hai-yu. Fluorescence quenching mechanism of graphene oxide by Fe3+[J]. Chinese Optics, 2016, 9(5): 569-578. doi: 10.3788/CO.20160905.0569
Citation: LI Zheng-shun, WANG Yan, WANG Lei, WANG Hai-yu. Fluorescence quenching mechanism of graphene oxide by Fe3+[J]. Chinese Optics, 2016, 9(5): 569-578. doi: 10.3788/CO.20160905.0569

Fe3+对石墨烯氧化物荧光淬灭机理的研究

doi: 10.3788/CO.20160905.0569
基金项目: 

国家自然科学基金资助项目 21473077

详细信息
    作者简介:

    李正顺(1990-), 男, 山东枣庄人, 硕士研究生, 主要从事超快光电转换方面的研究.E-mail:1220580786@qq.com

    通讯作者:

    王海宇(1967-), 男, 吉林长春人, 教授, 博士生导师, 主要从事超快光谱技术方面的研究.E-mail:haiyu_wang@jlu.edu.cn

  • 中图分类号: TN249

Fluorescence quenching mechanism of graphene oxide by Fe3+

Funds: 

Supported by National Natural Science Foundation of China 21473077

More Information
  • 摘要: 采用改进的Humer法合成了石墨烯氧化物,利用搭建的时间分辨光谱探测系统详细探究了Fe3+(浓度为0.5、1、2 mmol/L)对石墨烯氧化物荧光淬灭物理机制。稳态荧光发射光谱中,随着Fe3+浓度的增加,石墨烯氧化物的荧光强度急剧减弱。时间分辨荧光光谱和飞秒瞬态吸收光谱研究证实,加入不同浓度Fe3+的GO其动力学衰减曲线基本没有任何变化。结果表明,Fe3+对石墨烯氧化物的荧光淬灭主要是静态的荧光淬灭过程。

     

  • 图 1  时间分辨光谱探测系统结构示意图

    Figure 1.  Schematic diagram of time-resolved spectroscopy probe system

    图 2  加入不同浓度Fe3+的GO的稳态吸收光谱

    Figure 2.  Steady-state absorption spectra of GO with different Fe3+ concentrations

    图 3  加入不同浓度Fe3+的GO的荧光发射光谱

    Figure 3.  Steady-state emission spectra of GO with different Fe3+ concentrations

    图 4  加入不同浓度Fe3+的GO的时间分辨发射光谱

    Figure 4.  $Time-resolved emission spectra of GO with different Fe3+ concentrations

    图 5  加入不同浓度Fe3+的GO在400 nm激发下的瞬态吸收光谱

    Figure 5.  Transient absorption spectra of GO with different Fe3+ concentrations at 400 nm excitation

    图 6  加入不同浓度Fe3+的GO在530 nm激发下的瞬态吸收光谱

    Figure 6.  Transient absorption spectra of GO with different Fe3+ concentrations at 530 nm excitation

    图 7  400 nm激发下加入不同浓度Fe3+的GO测量的动力学衰减曲线

    Figure 7.  Dynamic decay curves of GO with different Fe3+ concentrations at 400 nm excitation

    图 8  530 nm激发下加入不同浓度Fe3+的GO测量的动力学衰减曲线

    Figure 8.  Dynamic decay curves of GO with different Fe3+ concentrations at 530 nm excitation

  • [1] JOHARI P, SHENOY V B. Modulating optical properties of graphene oxide:role of prominent functional groups[J]. ACS Nano, 2011, 5:7640-7647. doi: 10.1021/nn202732t
    [2] LIU J, KIM G H, XUE Y, et al.. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells[J]. Adv. Mater., 2014, 26:786-790. doi: 10.1002/adma.201302987
    [3] MCDONALD M P, ELTOM A, VIETMEYER F, et al.. Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics[J]. Nano Lett., 2013, 13:5777-5784. doi: 10.1021/nl402057j
    [4] XIN G, MENG Y, MA Y, et al.. Tunable photoluminescence of graphene oxide from near-ultraviolet to blue[J]. Mater. Lett., 2012, 74:71-73. doi: 10.1016/j.matlet.2012.01.047
    [5] MATHKAR A, TOZIER D, COX P, et al.. Controlled, stepwise reduction and band gap manipulation of graphene oxide[J]. J. Phys. Chem. Lett., 2012, 3:986-991. doi: 10.1021/jz300096t
    [6] LUO Z, VORA P M, MELE E J, et al.. Photoluminescence and band gap modulation in graphene oxide[J]. Appl. Phys. Lett., 2009, 94:111909. doi: 10.1063/1.3098358
    [7] CHIEN C T, LI S S, LAI W J, et al.. Tunable photoluminescence from graphene oxide[J]. Angew. Chem. Int. Ed., 2012, 51:6662-6666. doi: 10.1002/anie.201200474
    [8] THOMAS H R, VALL S C, YOUNG R J, et al.. Identifying the fluorescence of graphene oxide[J]. J. Phys. Chem. C, 2013, 1:338-342. http://pubs.rsc.org/en/content/articlelanding/2013/tc/c2tc00234e#!
    [9] LI M, CUSHING S K, ZHOU X, et al.. Fingerprinting photoluminescence of functional groups in graphene oxide[J]. J. Mater. Chem., 2012, 22:23374-23379. doi: 10.1039/c2jm35417a
    [10] ZHANG X F, SHAO X, LIU S. Dual fluorescence of graphene oxide:a time-resolved study[J]. J. Phys. Chem. A, 2012, 116:7308-7313. doi: 10.1021/jp301755b
    [11] KOZAWA D, MIYAUCHI Y, MOURI S, et al.. Exploring the origin of blue and ultraviolet fluorescence in graphene oxide[J]. J. Phys. Chem. Lett., 2013, 4:2035-2040. doi: 10.1021/jz400930f
    [12] CUSHING S K, LI M, HUANG F, et al.. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J]. ACS Nano, 2013, 8:1002-1013. http://www.ncbi.nlm.nih.gov/pubmed/24359152
    [13] LIU Z, ROBINSON J T, SUN X, et al.. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J. Am. Chem. Soc., 2008, 130:10876-10877. doi: 10.1021/ja803688x
    [14] CHEN J L, YAN X P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH[J]. Chem. Commun., 2011, 47:3135-3137. doi: 10.1039/c0cc03999c
    [15] SUN X, LIU Z, WELSHER K, et al.. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res., 2008, 1:203-212. doi: 10.1007/s12274-008-8021-8
    [16] 李云飞, 陈洋, 毕宴钢, 等.还原GO-银纳米线柔性复合电极的制备与性能研究[J].发光学报, 2015, 36(5):545-551. doi: 10.3788/fgxb

    LI Y F, CHEN Y, BI Y G, et al.. Fabrication and characterization of reduced graphene oxide/silver nanowires flexible hybrid electrodes[J]. Chin. J. Lumin., 2015, 36(5):545-551.(in Chinese) doi: 10.3788/fgxb
    [17] 谢世伟, 肖啸, 谭建军, 等.基于石墨烯基电极染料敏化太阳能电池的研究进展[J].中国光学, 2014, 7(1):47-56. http://www.chineseoptics.net.cn/CN/abstract/abstract9095.shtml

    XIE SH W, XIAO X, TAN J J, et al.. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J]. Chinese Optics, 2014, 7(1):47-56.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9095.shtml
    [18] 董浩, 赵晓晖, 曲良东, 等.氧化石墨烯/硒化锌纳米光电材料的制备及其蓝光发射特性[J].发光学报, 2014, 7:767-771. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201407003.htm

    DONG H, ZHAO X H, QU L D, et al.. Preparation and characteristics of reduced graphene oxide-zinc selenide nano optoelectronic materials[J]. Chin. J. Lumin., 2014, 7:767-771.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201407003.htm
    [19] WANG Y F, WANG H Y, LI Z S, et al.. Electron extraction dynamic decays in CdSe and CdSe/CdS/ZnS quantum dots adsorbed with methyl viologen[J]. J. Phys. Chem. C, 2014, 118:17240-17246. doi: 10.1021/jp5024789
    [20] WANG L, ZHU S J, WANG H Y, et al.. Unraveling bright molecule-like state and dark intrinsic state in green-fluorescence graphene quantum dots via ultrafast spectroscopy[J]. Adv. Optical Mater, 2013, 1:264-271. doi: 10.1002/adom.201200020
    [21] GAO B R, WANG H Y, SUN H B, et al.. Time-resolved fluorescence study of aggregation-induced emission enhancement by restriction of intramolecular charge transfer state[J]. J. Phys. Chem. B, 2010, 114:128-134. doi: 10.1021/jp909063d
  • 加载中
图(8)
计量
  • 文章访问数:  1837
  • HTML全文浏览量:  358
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-05-20
  • 刊出日期:  2016-10-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!