留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤光栅与受激布里渊信号的耦合特性

孙宝臣 侯跃敏 李峰 李剑芝

孙宝臣, 侯跃敏, 李峰, 李剑芝. 光纤光栅与受激布里渊信号的耦合特性[J]. 中国光学(中英文), 2017, 10(4): 484-490. doi: 10.3788/CO.20171004.0484
引用本文: 孙宝臣, 侯跃敏, 李峰, 李剑芝. 光纤光栅与受激布里渊信号的耦合特性[J]. 中国光学(中英文), 2017, 10(4): 484-490. doi: 10.3788/CO.20171004.0484
SUN Bao-chen, HOU Yue-min, LI Feng, LI Jian-zhi. Coupling characteristics between fiber grating and stimulated Brillouin signal[J]. Chinese Optics, 2017, 10(4): 484-490. doi: 10.3788/CO.20171004.0484
Citation: SUN Bao-chen, HOU Yue-min, LI Feng, LI Jian-zhi. Coupling characteristics between fiber grating and stimulated Brillouin signal[J]. Chinese Optics, 2017, 10(4): 484-490. doi: 10.3788/CO.20171004.0484

光纤光栅与受激布里渊信号的耦合特性

doi: 10.3788/CO.20171004.0484
基金项目: 

国家自然科学基金项目 51508349

河北省自然科学基金项目 E2015210094

河北省高等学校科学技术研究青年基金项目 QN2016080

详细信息
    作者简介:

    孙宝臣(1961-), 男, 河北高碑店人, 教授, 1982年于东北重型机械学院获得硕士学位, 主要从事智能材料方面的研究。E-mail:sunbaochen@stdu.edu.cn

    李剑芝(1978-), 女, 河北定州人, 副教授, 2004年于武汉理工大学获得硕士学位, 2009年于北京交通大学获得博士学位, 主要从事光纤传感及智能材料结构方面的研究

    通讯作者:

    李剑芝, E-mail:lijianzhigang@163.com

  • 中图分类号: TU317

Coupling characteristics between fiber grating and stimulated Brillouin signal

Funds: 

National Natural Science Foundation of China 51508349

Hebei Province Natural Science Foundation of China E2015210094

Youth S & T Research Fund of Colleges & Universities in Hebei Province QN2016080

More Information
  • 摘要: 近年来,光纤布拉格光栅传感器与全分布式光纤传感器的融合技术受到了广泛关注,然而光纤布拉格光栅与布里渊信号之间的耦合特性鲜有报道。本文研究了光栅类型、波长、反射率及光纤的光致折射率对受激布里渊信号的影响规律,并探讨了空间分辨率对光纤布拉格光栅定位功能的影响。实验结果表明,在布里渊光时域分析系统中,光纤布拉格光栅处有尖锐的反射峰,而啁啾光栅、长周期光栅及光致折射率变化的光纤处均未出现尖锐的反射峰;光纤布拉格光栅反射率与受激布里渊散射功率谱无关;当光纤布拉格光栅的波长接近1 550 nm时,对受激布里渊频移测量的影响最大;在8 m的长度范围内,光纤布拉格光栅的定位误差约为4 cm,并且与空间分辨率无关。

     

  • 图 1  受激布里渊测试的实验装置

    Figure 1.  Experimental instrument for stimulated Brillouin test

    图 2  受激布里渊测试实验的光路系统

    Figure 2.  Optical path system of simulated Brillouin test experiment

    图 3  不同类型光栅的光谱。(a)长周期光栅的光谱;(b)光纤布拉格光栅和啁啾光栅的光谱

    Figure 3.  Spectra of different kinds of gratings. (a) Spectrum of long period grating; (b) Spectrum of FBG and chirped grating

    图 4  曝光致折射率改变光纤测试样品

    Figure 4.  Test samples of optical fiber with different refractive index induced by exposure

    图 5  光栅特性参数对受激布里渊散射功率谱影响的实验装置示意图

    Figure 5.  Schematic diagram of experimental setup for measuring the influence of grating characteristic parameters on stimulated Brillouin scatting power spectrum

    图 6  不同类型光栅的受激布里渊散射功率谱

    Figure 6.  Power spectra of stimulated Brillouin scattering of different types of gratings

    图 7  不同曝光时间处理的载氢光纤受激布里渊散射功率谱

    Figure 7.  Power spectra of stimulated Brillouin scattering of hydrogen loaded optical fiber with different exposure time

    图 8  反射率不同的光纤布拉格光栅的受激布里渊散射功率谱。(a)三个光纤样品的受激布里渊功率谱;(b)FBG1的受激布里渊功率谱;(c)FBG2的受激布里渊功率谱图;(d)FBG3的受激布里渊功率谱图

    Figure 8.  Power spectra of stimulated Brillouin scattering of FBG with different reflectivities. (a) Power spectra of stimulated Brillouin scattering of three fiber specimens; (b) Power spectra of stimulated Brillouin scattering for FBG1; (c) Power spectra of stimulated Brillouin scattering for FBG2; (d) Power spectra of stimulated Brillouin scattering for FBG3

    图 9  波长不同的光纤布拉格光栅的受激布里渊散射信号功率谱

    Figure 9.  Power spectra of stimulated Brillouin scattering of FBG with different wavelengths

    图 10  不同波长的光纤布拉格光栅的布里渊频移图

    Figure 10.  Brillouin frequency shift of FBG with different wavelengths

    图 11  不同空间分辨率下光纤布拉格光栅的受激布里渊散射功率谱

    Figure 11.  Power spectra of stimulated Brillouin scattering of FBG at different spatial resolutions

    表  1  不同类型光栅的性能参数

    Table  1.   Characteristic parameters of different kinds of gratings

    Grating Parameter Location of
    the gate/m
    Fiber length/m
    Wavelength/nm Refractive index/% Bandwidth/nm
    Long period grating 1 538.49 99 4.39 2.5 3.1
    Chirped grating 1 545.12 99 1.24 2.4 4.07
    FBG 1 545.13 90 0.24 1.72 4.1
    下载: 导出CSV

    表  2  光纤布拉格光栅特性参数对受激布里渊信号影响的实验中光纤布拉格光栅的性能参数

    Table  2.   Characteristic parameters of FBG in the experiment shown in Figure 5

    Parameter Group 1 Group 2 Group 3
    FBG 1 FBG 2 FBG 3 FBG 1 FBG 2 FBG 3
    Wavelength/nm 1 510
    1 530
    1 545
    1 510
    1 530
    1 545
    1 510
    1 530
    1 545
    1 530
    1 530
    1 530
    1 530
    1 530
    1 530
    1 530
    1 530
    1 530
    1 549.8
    Refractive index/% 34.08
    34.68
    33.16
    60.37
    61.98
    62.67
    90.73
    89.88
    90.53
    33.16
    34.53
    34.68
    61.452
    58.98
    61.541
    89.16
    91.15
    91.15
    96.34
    Bandwidth/nm 0.17
    0.18
    0.17
    0.23
    0.23
    0.24
    0.18
    0.17
    0.18
    0.15
    0.15
    0.16
    0.20
    0.20
    0.18
    0.27
    0.27
    0.26
    0.21
    下载: 导出CSV

    表  3  空间分辨率对光纤布拉格光栅定位影响试验中光纤布拉格光栅的性能参数

    Table  3.   Characteristic parameters of FBG in the experiment of spatial resolution influence on FBG positioning

    No. Parameter
    Wavelength/
    nm
    Refractive
    index /%
    Bandwidth/
    nm
    Spacing/m
    FBG 1 1 545.18 90.39 0.24
    FBG 2 1 555.15 90.81 0.25 7.98
    FBG 3 1 560.19 89.86 0.27 8.02
    下载: 导出CSV

    表  4  不同空间分辨率下光纤布拉格光栅的空间位置及定位误差

    Table  4.   Spatial location and positioning error of FBG at different spatial resolutions

    Spatial resolution/cm Spatial location/m Positioning error/cm
    FBG1 FBG2 FBG3 FBG1-FBG2 FBG2-FBG3
    10 8.059 16.068 24.127 3.8 3.9
    20 8.059 16.068 24.127 3.8 3.9
    50 8.008 16.016 24.076 2.8 4
    100 7.751 15.811 23.870 8 3.9
    下载: 导出CSV
  • [1] HE J, ZHOU Z, WU H. Long-term monitoring of a civil defensive structure based on distributed Brillouin optical fiber sensor[J]. Pacific Science Review, 2007, 9(1):97-102. doi: 10.1007/s13349-016-0172-9
    [2] MOREY W W, MELTZ G, GLENN W H. Fiber optic Bragg grating sensors[J]. SPIE, 1990, 1169:98-107.
    [3] KERSEY A D, DAVIS M A, PATRICK H J, et al.. Fiber grating sensors[J]. Journal of Lightwave Technology, 1997, 15(8):1442-1463. doi: 10.1109/50.618377
    [4] DIAZ S, MAFANG S F, LOPEZ-AMO M, et al.. High performance Brillouin distributed fibre sensor[J]. SPIE, 2007, 6619:661938. https://www.researchgate.net/profile/Silvia_Diaz2/publication/234101019_High_performance_Brillouin_distributed_fibre_sensor/links/0912f50a357644b240000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [5] SUN Q, TU X, SUN S, et al.. Long-range BOTDA sensor over 50 km distance employing pre-pumped simplex coding[J]. Journal of Optics, 2016, 18(5):055501. doi: 10.1088/2040-8978/18/5/055501
    [6] WILLIAMS, XIAOYI, LIANG, et al.. Investigation of combined Brillouin gain and loss in a birefringent fiber with applications in sensing[J]. Chinese Optics Letters, 2014, 12(12):126-132. https://www.researchgate.net/publication/273475820_Investigation_of_combined_Brillouin_gain_and_loss_in_a_birefringent_fiber_with_applications_in_sensing
    [7] MENG D, ANSARI F, FENG X. Detection and monitoring of surface micro-cracks by PPP-BOTDA[J]. Applied Optics, 2015, 54(16):4972-4978. doi: 10.1364/AO.54.004972
    [8] 李川, 刘江, 庄君刚, 等.基于背向Brillouin散射监测混凝土应变[J].光学精密工程, 2014, 22(2):325-330. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402012.htm

    LI CH, LIU J, ZHUANG J G, et al.. Strain detection concrete structures based on Brillouin backscattering[J]. Optics and Precision Engineering, 2014, 22(2):325-330. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201402012.htm
    [9] FOALENG S M, TUR M, BEUGNOT J C, et al.. High spatial and spectral resolution long-range sensing using Brillouin echoes[J]. Journal of Lightwave Technology, 2010, 28(20):2993-3003. doi: 10.1109/JLT.2010.2073443
    [10] SPERBER T, EYAL A, TUR M, et al.. High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing[J]. Optics Express, 2010, 18(8):8671-8679. doi: 10.1364/OE.18.008671
    [11] THEVENAZ L, DENISOV A, SOTO M A. Brillouin distributed fiber sensing at ultra-high spatial resolution[C]. Proceedings of the IEEE Photonics Conference (IPC) 2015, Reston, USA, October 4-8, 2015.
    [12] 徐国权, 熊代余.光纤光栅传感技术在工程中的应用[J].中国光学, 2013, 6(3):306-317. http://www.chineseoptics.net.cn/CN/abstract/abstract8937.shtml

    XU G Q, XIONG D Y.Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3):306-317. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8937.shtml
    [13] 吴晶, 吴晗平, 黄俊斌, 等.光纤光栅传感信号解调技术研究进展[J].中国光学, 2014, 7(4):519-531. http://www.chineseoptics.net.cn/CN/abstract/abstract9164.shtml

    WU J, WU H P, HUANG J B, et al.. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4):519-531. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9164.shtml
    [14] LUO J, HAO Y, YE Q, et al.. Development of optical fiber sensors based on Brillouin scattering and FBG for on-line monitoring in overhead transmission lines[J]. Journal of Lightwave Technology, 2013, 31(10):1559-1565. doi: 10.1109/JLT.2013.2252882
    [15] SUN A, SEMENOVA Y, FARRELL G, et al.. BOTDR integrated with FBG sensor array for distributed strain measurement[J]. Electronics Letters, 2010, 46(1):66-68. doi: 10.1049/el.2010.2621
    [16] LAN C, ZHOU Z, OU J. Monitoring of structural prestress loss in RC beams by inner distributed Brillouin and fiber Bragg grating sensors on a single optical fiber[J]. Structural Control and Health Monitoring, 2014, 21(3):317-330. doi: 10.1002/stc.v21.3
    [17] TAKI M, NANNIPIERI T, ZAIDI F, et al.. Hybrid optical fibre sensor for simultaneous dynamic FBG interrogation and distributed static strain/temperature measurements[J]. Electronics Letters, 2012, 48(24):1548-1550. doi: 10.1049/el.2012.2457
    [18] LI J, SUN B, KINZO K. The influence of FBG on Brillouin distributed sensor[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5):629-643. doi: 10.1007/s13349-015-0104-0
    [19] 李剑芝, 姜德生.载氢与掺锗石英光纤的光致折射率改变[J].无机材料学报, 2006, 21(2):345-350. http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200602014.htm

    LI J ZH, JIANG D SH. Photolytic index changes in germanosilicate and hydrogen-loaded fiber[J]. Journal of Inorganic Matreials, 2006, 21(2):345-350. (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-WGCL200602014.htm
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  2337
  • HTML全文浏览量:  875
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-10
  • 修回日期:  2017-04-15
  • 刊出日期:  2017-08-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!