留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser-induced periodic surface structures with ultrashort laser pulse

LI Chen STOIAN Razvan CHENG Guang-hua

李晨, STOIANRazvan, 程光华. 超短脉冲激光诱导周期性表面结构[J]. 中国光学(中英文), 2018, 11(1): 1-17. doi: 10.3788/CO.20181101.0001
引用本文: 李晨, STOIANRazvan, 程光华. 超短脉冲激光诱导周期性表面结构[J]. 中国光学(中英文), 2018, 11(1): 1-17. doi: 10.3788/CO.20181101.0001
LI Chen, STOIAN Razvan, CHENG Guang-hua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/CO.20181101.0001
Citation: LI Chen, STOIAN Razvan, CHENG Guang-hua. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/CO.20181101.0001

超短脉冲激光诱导周期性表面结构

基金项目: 

国家自然科学基金项目 61378019

国家自然科学基金项目 61223007

国家自然科学基金项目 61705124

详细信息
    作者简介:

    李晨(1985—), 男, 陕西西安人, 中法联合培养博士, 讲师, 主要从事超短脉冲激光加工和超快诊断测量等方面的研究。E-mail:782969713@qq.com

    程光华(1976—),男,陕西西安人,博士,研究员,主要从事超短脉冲激光加工等方面的研究。E-mail:gcheng@opt.ac.cn

  • 中图分类号: TG66;O439

Laser-induced periodic surface structures with ultrashort laser pulse

doi: 10.3788/CO.20181101.0001
Funds: 

National Natural Science Foundation of China 61378019

National Natural Science Foundation of China 61223007

National Natural Science Foundation of China 61705124

More Information
  • 摘要: 激光诱导周期性表面结构(Laser-induced periodic surface structures,LIPSS)具有纳米尺度的特征结构和自重复的微观尺度的排列图案,因此,LIPSS在传感器、太阳能发电、光催化等方面具有广泛的应用前景。本文首先介绍LIPSS形成过程中超快激光与物质相互作用的复杂过程,强调瞬态光学性质和表面结构变化的作用。然后综述几种具有代表性的LIPSS形成机理,并且讨论了各自的优缺点。接着介绍了LIPSS形成过程中材料的变化,主要包括材料化学成分、晶体结构和表面微观结构的变化。最后综述了LIPSS在材料表面处理、光学和机械等方面的应用。

     

  • Figure 1.  SEM images of LIPSS on different materials irradiated by linearly-polarized fs laser pulses: (a)Metal tungsten; (b)semiconductor single crystal silicon; (c)fused silica; (d)bulk metal glass(BMG); (e)crystal alloy(CA) from BMG; (f)CMSX-4. The laser polarization (E)direction is indicated in (a) with a double-head arrow. Note that different scales in each image

    Figure 2.  Drawing of laser beam incidence on rough surface in Sipe theory

    Figure 3.  Plasmon wavelength calculated as a function of electron density for the glassy carbon(GC)/diamond like carbon(DLC) interface(lower curve) and for the air/GC(upper curve)[47]

    Figure 4.  (a) holographic ablation model used in FDTD simulations. (b)Inter-pulse feedback mechanisms in FDTD simulations[52]

    Figure 5.  Scheme of physical processes involved in the formation of LSFL on silicon surface upon femtosecond laser pulse irradiation[65]

    Figure 6.  (a) Water drops on a lotus leaf. (b)SEM image of the micro-structures on the surface of a lotus leaf(scale bar 10 μm) and inset: nano-structures(scale bar 5 μm)[74]. (c)SEM images of femtosecond laser textured Si surface showing micro-structures(scale bar 5 μm) and inset: nano-structures(scale bar 1 μm). (d)A water droplet on a laser-structured Si surface[76]

    Figure 7.  Gray and black aluminum produced by femtosecond laser pulses[84]

    Figure 8.  Black silicon made without special gas ambient[92]

    Table  1.   Literature summary of LIPSS reported on different solids(metals, semiconductors and dielectrics) upon near-infrared fs-laser pulse irradiation(λ=740-800 nm, τ=25-160 fs, ν < 5 kHz) and nearly normal incidence in air or vacuum, and proposed formation mechanisms. (Lattice structure:c-single-crystalline, a-amorphous; LIPSS orientation: ⊥: ripples aligned perpendicular to polarization, ║:ripples aligned parallel to fpolarization; LIPSS ormation mechanism: Sipe:Sipe theory[14], SPP:surface plasmon polariton, roughness effect, heat effect, surface plasma, interference mechanism, Drude:Drude model for transient optical properties, exCE:Coulomb plosion. Material classes:metal-red color, semiconductor-green color, dielectric-blue color)

    Material λLSFL/nm λHSFL/nm Reference and mechanisms
    Al 500-530⊥ 20-220 [13] Sipe model, [4, 3]
    Au 580⊥ [17, 18] SPP+roughness+heat, [22, 23]
    Cu 500-700 ⊥ 270-370⊥ [15] Surface plasma, [22, 23]
    Ni 750-760⊥ 200║ [24, 20] SPP+Drude
    Pt 550-700 ⊥ [17, 18] SPP+roughness+heat
    [16] surface plasma
    Ti 500-700 ⊥ 200-400 ⊥ [16] surface plasma. [25, 26, 27, 28]. Interfernce+SPP
    W 400-600 ⊥ [16], surface plasma [29]
    Mo 470-720⊥ [16], surface plasma
    [19] SPP+roughness+heat
    CuZn 600-680⊥ [30] Interference+SPP
    Steel 316L 660⊥ [31]
    Steel X40Cr14 550-580⊥ [32]
    c-InAs 700⊥ [5]
    c-Si 560-730⊥ [26, 33, 34] SPP, [13] Sipe model,
    [35, 36] Sipe model+Drude+SPP, [6, 23]
    [37, 38] Sipe+Drude
    c-InP 590-750 ⊥ 330-360 ⊥ [7, 39]
    c-GaP 520-680 ⊥ 150-175 ⊥ [8]
    c-ZnO 630-730 ⊥ 200-280 ⊥ [40]
    diamond 750⊥ 210║ [41]
    [30] SPP+CE
    [42] Sipe+Drude
    a-SiO2 500-800║ 170-400 ⊥ [26, 43, 44, 45],
    [2] Surface plasma
    c-SiO2 460-900║ 170-450⊥ [42] Sipe model+Drude
    graphite 70-170⊥ [30] SPP+CE
    c-SiC 500⊥ 250⊥ [46]
    下载: 导出CSV
  • [1] BIRNBAU M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 1965, 36(11):3688-3689. doi: 10.1063/1.1703071
    [2] ZHANG W, CHENG G H, FENG Q, et al.. Abrupt transition from wavelength structure to subwavelength structure in a single-crystal superalloy induced by femtosecond laser[J]. Applied Surface Science, 2011, 257(9):4321-4324. doi: 10.1016/j.apsusc.2010.12.050
    [3] DERRIENA TJ-Y, TORRES R, SARNET T, et al.. Formation of femtosecond laser induced surface structures on silicon: Insights from numerical modeling and single pulse experiments[J]. Applied Surface Science, 2012, 258:9487-9490. doi: 10.1016/j.apsusc.2011.10.084
    [4] GOLOSOV E V, IONIN A A, KOLOBOV Y R, et al.. Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses[J]. Nanotechnologies in Russia, 2011, 6:237-243. doi: 10.1134/S199507801102008X
    [5] BOROWIEC A, HAUGEN H K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses[J]. Applied Physics Letters, 2003, 82(25):4462-4464. doi: 10.1063/1.1586457
    [6] BONSE J, BAUDACH S, KRUGER J, et al.. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 2002, 74(1):19-25. doi: 10.1007/s003390100893
    [7] COSTACHE F, ARGUIROVA S K, REIF J. Sub-damage-threshold femtosecond laser ablation from crystalline Si:surface nanostructures and phase transformation[J]. Applied Physics A, 2004, 79(4):1429-1432. doi: 10.1007/s00339-004-2803-y
    [8] HSU E M, CRAWFORD T H R, TIEDJE H F, et al.. Periodic surface structures on gallium phosphide after irradiation with 150 fs-7 ns laser pulses at 800 nm[J]. Applied Physics Letters, 2007, 91:111102. doi: 10.1063/1.2779914
    [9] DUMITRU G, ROMANO V, WEBER H P, SENTIS M, et al.. Ablation of carbide materials with femtosecond pulses[J]. Applied Surface Science, 2003, 205:80-85. doi: 10.1016/S0169-4332(02)00906-6
    [10] BAUDACH S, BONSE J, KAUTEK W. Ablation experiments on polyimide with femtosecond laser pulses[J]. Applied Physics A, 1999, 69(Suppl.):S395-S398. doi: 10.1007/s003390051424.pdf
    [11] KANEKO S, ITO T, AKIYAMA K, et al.. Nano-strip grating lines self-organized by high speed scanning CW laser[J]. Nanotechnology, 2011, 22:175307. doi: 10.1088/0957-4484/22/17/175307
    [12] LI C, CHENG G H, COLOMBIER J P, et al.. Impact of evolving surface nanoscale topologies in femtosecond laser structuring of Ni-based superalloy CMSX-4[J]. Journal of Optics, 2016, 18(1):015402. doi: 10.1088/2040-8978/18/1/015402
    [13] YOUNG J F, PRESTON J S, DRIEL H M, et al.. Sipe. Laser-induced periodic surface structure.Ⅱ.experiments on Ge, Si, Al, and brass[J]. Physical Review B, 1983, 27(2):1155-1172. doi: 10.1103/PhysRevB.27.1155
    [14] SIPE J E, YOUNG. F, PRESTON J S, et al.. van Driel. Laser-induced periodic surface structure.I[J]. Theory. Physical Review B, 1983, 27:1141-1154. doi: 10.1103/PhysRevB.27.1141
    [15] SAKABE S, HASHIDA M, TOKITA S, et al.. Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse[J]. Physical Review B, 2009, 79(3):033409. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000008000002000081000001&idtype=cvips&gifs=Yes
    [16] OKAMURO M, HASHIDA M, MIYASAKA Y, et al.. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation[J]. Physical Review B, 2010, 82(16):165417. doi: 10.1103/PhysRevB.82.165417
    [17] HWANG T Y, GUO C. Angular effects of nanostructure-covered femtosecond laser induced periodic surface structures on metals[J]. Journal of Applied Physics, 2010, 108(7):073523. doi: 10.1063/1.3487934
    [18] VOROBYEV A Y, MAKIN V S, GUO C. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals[J]. Journal of Applied Physics, 2007, 101(3):034903. doi: 10.1063/1.2432288
    [19] VOROBYEV A Y, GUO C. Femtosecond laser-induced periodic surface structure formation on tungsten[J]. Journal of Applied Physics, 2008, 104(6):063523. doi: 10.1063/1.2981072
    [20] COLOMBIER J P, GARRELIE F, BRUNET P, et al.. Plasmonic and hydrodynamic effects in ultrafast laser-induced periodic surface structures on metals[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(3):362-368. https://www.researchgate.net/publication/258801411_Plasmonic_and_Hydrodynamic_Effects_in_Ultrafast_Laser-Induced_Periodic_Surface_Structures_on_Metals
    [21] VARLAMOVA O, REIF J, VARLAMOV S, et al.. Progress in Nonlinear Nano-optics(Ed. by Sakabe Shuji, Lienau Christoph, Grunwald and R diger)[M]. Springer, 2015:4.
    [22] WANG J, GUO C. Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals[J]. Applied Physics Letters, 2005, 87(25):251914. doi: 10.1063/1.2146067
    [23] WANG J, GUO C. Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. Journal of Applied Physics, 2007, 102(5):053522. doi: 10.1063/1.2776004
    [24] GARRELIE F, COLOMBIE J P, PIGEON F, et al. Parriaux. Evidence of surface plasmon resonance in ultrafast laser-induced ripples[J]. Optics Express, 2011, 19(10): 9035-9043. doi: 10.1364/OE.19.009035
    [25] TSUKAMOTO M, ASUKA K, NSKSNO H, et al.. Periodic microstructures produced by femtosecond laser irradiationon titanium plate[J]. Vacuum, 2006, 80(11):1346-1350. https://www.researchgate.net/publication/256912032_Periodic_microstructures_produced_by_femtosecond_laser_irradiation_on_titanium_plate
    [26] BONSE J, KRUGER J, HOHMS, et al.. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 2012, 24(4):042005. doi: 10.2351/1.4712171
    [27] GOLOSOV E V, EMELYANOV V I, IONIN A A, et al.. Femtosecond laser writing of subwave one-dimensional quasiperiodic nanostructures on a titanium surface[J]. JETP Letters, 2009, 90(2):107-110. doi: 10.1134/S0021364009140057
    [28] VOROBYEY A Y, GUO C. Femtosecond laser structuring of titanium implants[J]. Applied Surface Science, 2007, 253:7272-7280. doi: 10.1016/j.apsusc.2007.03.006
    [29] ZHAO Q Z, MALZER S, WANG L J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses[J]. Optics Letters, 2007, 32(13):1932-1934. doi: 10.1364/OL.32.001932
    [30] HUANG M, ZHAO F, CHENG Y, et al.. Origin of laser-induced near-subwavelength ripples:interference between surface plasmons and incident laser[J]. ACS Nano, 2009, 3:4062-4070. doi: 10.1021/nn900654v
    [31] DUSSER B, SAGAN Z, SODER H, et al.. Controlled nanostructures formation by ultra fast laser pulses for color marking[J]. Optics Express, 2010, 18(3):2913-2924. doi: 10.1364/OE.18.002913
    [32] BYSKOV-NIELSEN J, SAVOLAINEN J M, CHRISTENSEN M S, et al.. Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates[J]. Applied Physics A, 2010, 101(1):97-101. doi: 10.1007/s00339-010-5766-1
    [33] BONSE J, ROSENFELD A, KRUGER J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structuresupon irradiation of silicon by femtosecond-laser pulses[J]. Journal of Applied Physics, 2009, 106(10):104910. doi: 10.1063/1.3261734
    [34] DERRIEN T J Y, ITINA T E, TORRE R, et al.. Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 2013, 114:083104. doi: 10.1063/1.4818433
    [35] BONSE J, KRUGER J. Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon[J]. Journal of Applied Physics, 2010, 108(3):034903. doi: 10.1063/1.3456501
    [36] BINSE J, ROSENFELD A, KRUGER J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures[J]. Applied Surface Science, 2011, 257:5420-5423. doi: 10.1016/j.apsusc.2010.11.059
    [37] SKOLSKI J Z P, ROMER G R B E, OBONA J V, et al.. Laser-induced periodic surface structures:fingerprints of light localization[J]. Physical Review B, 2012, 85(7):075320. doi: 10.1103/PhysRevB.85.075320
    [38] SKOLSKI J Z P, ROMER G R B E, OBONA J V, et al.. Inhomogeneous absorption of laser radiation:trigger of LIPSS formation[J]. Journal of Laser Micro/Nanoengineering, 2013, 8(1):1-5. https://www.researchgate.net/publication/275816703_Inhomogeneous_Absorption_of_Laser_RadiationTrigger_of_LIPSS_Formation
    [39] BONSE J, MUNZ M, STURM H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses[J]. Journal of Applied Physics, 2005, 97(1):013538. doi: 10.1063/1.1827919
    [40] DUFFT D, ROSENFELD A, DAS S K, et al.. Femtosecond laser-induced periodic surface structures revisited:a comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3):034908. doi: 10.1063/1.3074106
    [41] WU Q, MA Y, FANG R, et al.. Femtosecond laser-induced periodic surface structure on diamond film[J]. Applied Physics Letters, 2003, 82(11):1703-1705. doi: 10.1063/1.1561581
    [42] HOHM S, ROSENFELD A, KRUGER J, et al.. Femtosecond laser-induced periodic surface structures on silica[J]. Journal of Applied Physics, 2012, 112:014901. doi: 10.1063/1.4730902
    [43] ROHLOFF M, DAS S K, HOHM S, et al.. Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laserpulse irradiation sequences[J]. Journal of Applied Physics, 2011, 110(1):014910, . doi: 10.1063/1.3605513
    [44] SUN Q, LIANG F, VALLEE R, et al.. Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses[J]. Optics Letters, 2008, 33(22):2713-2715. doi: 10.1364/OL.33.002713
    [45] ROSENFELD A, ROHLOF F M. Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse[J]. Applied Surface Science, 2012, 258:9233-9236. doi: 10.1016/j.apsusc.2011.09.076
    [46] YAMAGUCHI M, UENO S, KUMA R. Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC[J]. Applied Physics A, 2010, 99(1):23-27. doi: 10.1007/s00339-010-5569-4
    [47] MIYAJI G, MIYAZAKI K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express, 2008, 16(20):16265-16271. doi: 10.1364/OE.16.016265
    [48] ZHOU G S, FAUCHET P M, SIEGMAN A E. Growth of periodic surface structures on solids during laser illumination[J]. Physical Review B, 1982, 26(10):5366. doi: 10.1103/PhysRevB.26.5366
    [49] SIEGMAN A E, FAUCHET P M. Stimulated wood's anomalies on laser-illuminated surfaces[J]. IEEE Journal of Quantum Electronics, 1986, 22:1384-1403. doi: 10.1109/JQE.1986.1073133
    [50] ZHANG H, COLOMBIER J P, LI C, et al.. Coherence in ultrafast laser-induced periodic surface structures[J]. Physical Review B, 2015, 92(17):174109. doi: 10.1103/PhysRevB.92.174109
    [51] YEE K S. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3):302-307. doi: 10.1109/TAP.1966.1138693
    [52] SKOLSKI J Z P, R MER G R B E, VINCENC OBONA J, et al.. Huis in't Veld. Modeling laser-induced periodic surface structures:finite-difference time-domain feedback simulations[J]. Journal of Applied Physics, 2014, 115(10):103102. doi: 10.1063/1.4867759
    [53] KOKHANOVSKY A A. Light scattering and remote sensing of atmosphere and surface[J]. Light Scattering Reviews, 2012, 6, Springer. http://ci.nii.ac.jp/ncid/BB07921055
    [54] TAFLOVE A, HAGNESS S C. Computational electrodynamics: the finite-difference time-domain method[R]. 3rd ed, Artech House, Norwood, 2005. https://www.researchgate.net/publication/202924435_Computational_Electrodynamics
    [55] REIF J, COSTACHE F, HENYK M, et al.. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics[J]. Applied Surface Science, 2002, 197:891-895. http://www.sciencedirect.com/science/article/pii/S0169433202004506
    [56] REIF J, VARLAMOVA O, VARLAMOV S, et al.. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation[J]. Applied Physics A, 2011, 104(3):969-973. doi: 10.1007/s00339-011-6472-3
    [57] BRADLEY R M, HARPER J M E. Theory of ripple topography induced by ion bombardment[J]. Journal of Vacuum Science & Technology A, 1988, 6:2390. https://www.researchgate.net/publication/224451190_Theory_of_ripple_topography_induced_by_ion_bombardment
    [58] REIF J, COSTACHE F, BESTEHORN M. Chapter 9 in Recent Advance in Laser Processing of Materials[M]//Ed. by J. Periere, E. Millon, E. Fogarassy. Amsterdam, Elsevier, 2006: 275.
    [59] VARLAMOVA O, RATZKE M, REIF J. Feedback effect on the self-organized nanostructures formation on silicon upon femtosecond laser ablation[J]. Solid State Phenomena, 2010, 156:535-540. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.430.3517&rep=rep1&type=pdf
    [60] KURAMOTO Y, TSUZUKI T. Persistent propagation of concentration waves in dissipative media far from thermal equilibrium[J]. Progress of Theoretical Physics, 1976, 55(2):356-369. doi: 10.1143/PTP.55.356
    [61] SIVASHINSKY G I. On self-turbulization of a laminar flame[J]. Acta Astronautica, 1979, 6(5):569-591. https://www.sciencedirect.com/science/article/pii/0094576579900195
    [62] BENNETT T D, KRAJNOVICH D J, GRIGOROPOULOS C P, et al.. Marangoni mechanism in pulsed laser texturing of magnetic disk substrates[J]. J. Heat Transfer, 1997, 119(3):589-596. doi: 10.1115/1.2824146
    [63] GETLING A V. Rayleigh-B nard convection: structures and dynamics[J]. World Scientific, Singapore, 1998. http://www.worldcat.org/title/rayleigh-benard-convection-structures-and-dynamics/oclc/38130717
    [64] BUIVIDAS R, ROSA L, LIUPAS R, et al.. Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback[J]. Nanotechnology, 2011, 22(5):055304. doi: 10.1088/0957-4484/22/5/055304
    [65] HOHM S, HERZLIEB M, ROSENFELD A, et al.. Dynamics of the formation of laser-induced periodic surface structures(LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics[J]. Applied Surface Science, In Press, 2015, doi: 10.1016/j.apsusc.2015.12.129.
    [66] MAO X L, CIOCAN A C, RUSSO R E. Preferential vaporization during laser ablation inductively coupled plasma atomic emission spectroscopy[J]. Applied Spectroscopy, 1998, 52(7):913-918. doi: 10.1366/0003702981944706
    [67] CLAUER A H, FAIRRAND B P, WILCOX B A. Laser shock hardening of weld zones in aluminum alloys[J]. Metallurgical and Materials Transactions A, 1977, 8(12):1871-1876. doi: 10.1007/BF02646559
    [68] COLOMBIER J P, GARRELIE F, FAURE N, et al.. Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals[J]. Journal of Applied Physics, 2012, 111(2):024902. doi: 10.1063/1.3676221
    [69] BECKFORD S, LANGSTON N, ZOU M, et al.. Fabrication of durable hydrophobic surfaces through surface texturing[J]. Applied Surface Science, 2011, 257:5688-5693. doi: 10.1016/j.apsusc.2011.01.074
    [70] SCHULZE A, MAITZ M F, ZIMMERMANN R, et al.. Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes[J]. RSC Advances, 2013, 3:22518-22526. doi: 10.1039/c3ra43659d
    [71] ROMERO L A, DICKEY F. Lossless laser beam shaping[J]. Journal of the Optical Society of America A, 1996, 13(4):751-760. doi: 10.1364/JOSAA.13.000751
    [72] MOMMA C, NOLTE S, KAMLAGE G, et al.. Beam delivery of femtosecond laser radiation by diffractive optical elements[J]. Applied Physics A, 1998, 67(5):517-520. doi: 10.1007/s003390050814
    [73] SANNER N, HUOT N, AUDOUARD E, et al.. Programmable focal spot shaping of amplified femtosecond laser pulses[J]. Optics Letters, 2005, 30(12):1479-1481. doi: 10.1364/OL.30.001479
    [74] BLOSSEY R. Self-cleaning surfaces-virtual realities[J]. Nature Material, 2003, 2(5):301-306. doi: 10.1038/nmat856
    [75] ZORBA V, STRATAKIS E, BARBEROGLOU M, et al.. Tailoring the wetting response of silicon surfaces via fs laser structuring[J]. Applied Physics A, 2008, 93(4):819. doi: 10.1007/s00339-008-4757-y
    [76] BARBEROGLOU M, ZORBA V, STRATAKIS E, et al.. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10):5425-5429. doi: 10.1016/j.apsusc.2008.07.130
    [77] VOROBYEV A Y, GUO C. Laser turns silicon superwicking[J]. Optics Express, 2010, 18(7):6455-6460. doi: 10.1364/OE.18.006455
    [78] GAMALY E, VAILIONIS A, MIZEIKIS V, et al.. Warm dense matter at the bench-top:fs-laser-induced confined micro-explosion[J]. High Energy Density Physics, 2012, 8(1):13-17. doi: 10.1016/j.hedp.2011.10.003
    [79] CHARPENTIER T V J, NEVILLE A, MILNER P, et al.. Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces[J]. Journal of Colloid and Interface Science, 2013, 394:539-544. doi: 10.1016/j.jcis.2012.11.021
    [80] DUNN A, WLODARCZYK K L, CARSTENSEN J V, et al.. Laser surface texturing for high friction contacts[J]. Applied Surface Science, 2015, 357:2313-2319. doi: 10.1016/j.apsusc.2015.09.233
    [81] ABELN T, KLINK U. Laser strukturieren zur Verbesserung der tribologischen Eigenschaften von Oberfl chen[R]. Proc. of Stuttgarter Lasertage, 2001.
    [82] WEIKERT M, DAUSINGER F. Surface structuring, in femtosecond technology for technical and medical applications[R]//Ed. by Dausinger F, Lichtner F, Lubatschowski H. Berlin, Springer-Verlag, 2004: 117-129.
    [83] BONSE J, KOTER R, HARTELT M, et al.. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications[J]. Applied Physics A, 2014, 117(1):103-110. doi: 10.1007/s00339-014-8229-2
    [84] VOROBYEV A Y, GUO C. Colorizing metals with femtosecond laser pulses[J]. Applied Physics Letters, 2008, 92(4):041914. doi: 10.1063/1.2834902
    [85] SUGIOKA K, MEUNIER M, PIQUE A. Laser precision microfabrication[M]. Springer Series in Materials Science, 2010, 135, Chapter 4.
    [86] VOROBYEV A Y, GUO C. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals[J]. Journal of Applied Physics, 2008, 103(4):043513. doi: 10.1063/1.2842403
    [87] SANCHEZ F, MORENZA J L, AGUIAR R, et al.. Whiskerlike structure growth on silicon exposed to ArF excimer laser irradiation[J]. Applied Physics Letters, 1996, 69(5):620. doi: 10.1063/1.117926
    [88] SHEEHY M A, WINSTON L, CAREY J E, et al.. Role of the background gas in the morphology and optical properties of laser-microstructured silicon[J]. Chemistry of Materials, 2005, 17:3582-3586. doi: 10.1021/cm049029i
    [89] VOROBYEV A Y, MAKIN V, GUO C. Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources[J]. Physical Review Letters, 2009, 102(23):234301. doi: 10.1103/PhysRevLett.102.234301
    [90] WAN J. Tunable thermal emission at infrared frequencies via tungsten gratings[J]. Optics Communications, 2009, 282(8):1671-1675. doi: 10.1016/j.optcom.2008.12.076
    [91] WU C, CROUCH C H, ZHAO L, et al.. Near-unity below-band gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13):1850-1852. http://adsabs.harvard.edu/abs/2001ApPhL..78.1850W?systemMessage=Wiley+Online+Library+will+be+unavailable+on+Saturday+17th+December+2016+at+09%3A00+GMT%2F+04%3A00+EST%2F+17%3A00+SGT+for+4hrs+due+to+essential+maintenance.Apologies+for+the+inconvenience
    [92] TORRES R, VERVISCH V, HALBWAX M, et al.. Femtosecond laser texturization for improvement of photovoltaic cells:black silicon[J]. Journal of Optoelectronics and Advanced Materials, 2010, 12(3):621-625. https://www.researchgate.net/publication/281155493_Femtosecond_laser_texturization_for_improvement_of_photovoltaic_cells_Black_Silicon
    [93] KHAKBAZNEJAD A, CHEHROUDI B, BRUNETTE D M, et al.. Effects of titanium-coated micromachined grooved substrata on orienting layers of osteoblast-like cells and collagen fibers in culture[J]. Journal of Biomedical Materials Research Part A, 2004, 70(2):206-218. https://www.researchgate.net/publication/8480132_Effects_of_titanium-coated_micromachined_grooved_substrata_on_orienting_layers_of_osteoblast-like_cells_and_collagen_fibers_in_culture
    [94] COCHRAN D L, BUSER D, BRUGGENKATE C M, et al.. The use of reduced healing times on ITI implants with a sandblasted and acid-etched(SLA) surface:early results from clinical trials on ITI SLA implants[J]. Clinical Oral Implants Research, 2002, 13(2):144-153. doi: 10.1034/j.1600-0501.2002.130204.x
    [95] YADA S, TERALAWA M. Femtosecond laser induced periodic surface structure on poly-L-lactic acid[J]. Optics Express, 23(5):5694-5703. doi: 10.1364/OE.23.005694
    [96] IVANOVA E P, HASAN J, WEBB H K, et al.. Bactericidal activity of black silicon[J]. Nature Communications, 2013, 4:2838. http://www.academia.edu/29179700/Bactericidal_activity_of_black_silicon
    [97] MESSAOUDI H, DAS S K, LANGE J, et al.. Femtosecond-laser induced nanostructuring for surface enhanced Raman spectroscopy[J]. Proc. SPIE, 2014, 8972:89720L. doi: 10.1117/12.2035810
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  3399
  • HTML全文浏览量:  1187
  • PDF下载量:  818
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2017-11-15
  • 刊出日期:  2018-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!