留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of glucose concentration on blood optical properties in THz frequency range

GUSEV Sviatoslav Igorevich DEMCHENKO Petr S CHERKASOVA Olga P FEDOROV Vyacheslav I KHODZITSKY Mikhail K

GUSEVSviatoslav Igorevich, DEMCHENKOPetr S, CHERKASOVAOlga P, FEDOROVVyacheslav I, KHODZITSKYMikhail K. 葡萄糖浓度对THz频段血液光学特性的影响[J]. 中国光学(中英文), 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182
引用本文: GUSEVSviatoslav Igorevich, DEMCHENKOPetr S, CHERKASOVAOlga P, FEDOROVVyacheslav I, KHODZITSKYMikhail K. 葡萄糖浓度对THz频段血液光学特性的影响[J]. 中国光学(中英文), 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182
GUSEV Sviatoslav Igorevich, DEMCHENKO Petr S, CHERKASOVA Olga P, FEDOROV Vyacheslav I, KHODZITSKY Mikhail K. Influence of glucose concentration on blood optical properties in THz frequency range[J]. Chinese Optics, 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182
Citation: GUSEV Sviatoslav Igorevich, DEMCHENKO Petr S, CHERKASOVA Olga P, FEDOROV Vyacheslav I, KHODZITSKY Mikhail K. Influence of glucose concentration on blood optical properties in THz frequency range[J]. Chinese Optics, 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182

葡萄糖浓度对THz频段血液光学特性的影响

详细信息
  • 中图分类号: O441.4;R446.11

Influence of glucose concentration on blood optical properties in THz frequency range

doi: 10.3788/CO.20181102.0182
Funds: 

the Government of Russian Federation 074-U01

More Information
    Author Bio:

    GUSEV Sviatoslav Igorevich(1991-), PhD student, Department of Photonics and Optical Information Technology, ITMO University, Russia.His research interests are in terahertz time-domain spectroscopy, diabetes care, non-invasive glucose measuring, signal processing.E-mail:mail@gusev-spb.ru

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests are in terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

    Corresponding author: KHODZITSKY Mikhail K, E-mail:khodzitskiy@yandex.ru
  • 摘要: 无创性血糖检测仍是糖尿病患者护理安全舒适的现实科学任务。本文研究了血糖光学特性与血糖浓度之间的相关性。用时域THz光谱研究了全血在0.3~0.5 THz频率范围内的透射谱。在注射胰岛素后的短时间内,由同一糖尿病患者产生了生物样品。得到了血液光学特性的频散特性。基于频散,给出了血糖浓度与折射率和介电常数的关系式。这项工作是复杂研究的一部分,重点是无创葡萄糖测量技术的发展。记录血糖水平与血液光学参数之间的依赖关系,使得将来可以使用反射光谱技术进行无创血糖水平检测。

     

  • Figure 1.  Schematic diagram of the setup(FL-1:femtosecond laser based on potassium-yttrium tungstate crystal activated with ytterbium(Yb:KYW), generating femtosecond pulses; F1, 2:a set of teflon filters for IR wavelength range cutting off, BS:beamsplitter, DL:optical delay line, M1, 2, 3:mirrors, Sam:investigated sample, Wol.:Wollaston prism, CdTe:electro optical cadmium-telluric crystal, BD:balanced detector, LA:lock-in amplifier, PC:personal computer, GTP:Glan-Taylor prism, PM1, 2:parabolic mirrors, Ch:chopper, DAC:digital to analog converter, ADC:analog to digital converter

    Figure 2.  (a) The scheme of sample preparation and (b)experimental signals

    Figure 3.  Polymethyl methacrylate(PMMA) container with blood

    Figure 4.  Dispersions of optical parameters of samples with different glucose concentration cglucose: (a)the real part of refractive index nreal(f); (b)the absorption coefficient α(f); (c)the real part of permittivity εreal(f); (d)the imaginary part of permittivity εimag(f)

    Figure 5.  Dependencies of glucose concentration with (a) the real part of refractive index cglusose and (b)with the real part of permittivity cglucose(εreal) at different frequencies

    Table  1.   The list of the glucose concentrations of samples used in experiment

    Sample No. mmol/L mg/dL
    1 3.0 54.0
    2 3.8 68.4
    3 6.2 111.6
    4 9.2 165.6
    5 11.0 198.0
    6 14.9 268.2
    7 18.0 324.0
    8 19.0 342.0
    下载: 导出CSV
  • [1] NORTHAM L, BARANOSKI G. A novel first principles approach for the estimation of the sieve factor of blood samples[J]. Optics Express, 2010, 18:7456-7469. doi: 10.1364/OE.18.007456
    [2] REID C B, REESE G, GIBSON A P, et al.. Terahertz time-domain spectroscopy of human blood[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3:363-367. doi: 10.1109/TTHZ.2013.2267414
    [3] TUCHIN V V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis[M]. CRC Press, 2015.
    [4] POPESCU D P, SOWA M G. In vitro assessment of optical properties of blood by applying the extended Huygens-Fresnel principle to time-domain optical coherence tomography signal at 1300 nm[J]. Journal of Biomedical Imaging, 2008, 7:591618. http://www.ncbi.nlm.nih.gov/pubmed/18618002
    [5] YIM D, BARANOSKI G V, KIMMEL B W, et al.. A cell-based light interaction model for human blood[J]. Wiley Online Library, 2012, 31:845-854. http://www.researchgate.net/publication/264618183_A_Cell-Based_Light_Interaction_Model_for_Human_Blood
    [6] FITZGERALD A, BERRY E, ZINOV'EV N, et al.. Catalogue of human tissue optical properties at terahertz frequencies[J]. Journal of Biological Physics, 2003, 29:123-128. doi: 10.1023/A:1024428406218
    [7] GUSEV S, BOROVKOVA M, STREPITOV M, et al.. Blood optical properties at various glucose level values in THz frequency range[J]. European Conferences on Biomedical Optics, 2015:95372A. doi: 10.1117/12.2195959.full
    [8] GUSEV S I, BALBEKIN N, SEDYKH E, et al.. Influence of creatinine and triglycerides concentrations on blood optical properties of diabetics in THz frequency range[J]. Journal of Physics:Conference Series, 2016, 735:012088. doi: 10.1088/1742-6596/735/1/012088
    [9] CERIELLO A, COLAGIURI S. International diabetes federation guideline for management of postmeal glucose:a review of recommendations[J]. Diabetic Medicine, 2008, 25:1151-1156. doi: 10.1111/dme.2008.25.issue-10
    [10] CHERKASOVA O, NAZAROV M, SHKURINOV A. Noninvasive blood glucose monitoring in the terahertz frequency range[J]. Optical and Quantum Electronics, 2016, 48:1-12. doi: 10.1007/s11082-015-0274-3
    [11] CHERKASOVA O, NAZAROV M, BERLOVSKAYA E, et al.. Studying human and animal skin optical properties by terahertz time-domain spectroscopy[J]. Bulletin of the Russian Academy of Sciences:Physics, 2016, 80:479-483. doi: 10.3103/S1062873816040067
    [12] CHERKASOVA O, NAZAROV M, SMIRNOVA I, et al.. Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes[J]. Physics of Wave Phenomena, 2014, 22:185-188. doi: 10.3103/S1541308X14030042
    [13] SELYATITSKAYA V, PALCHIKOVA N, KUZNETSOVA N, et al.. Adrenocortical system activity at highly and lowly resistant to alloxandiabetogenic action rats[J]. Fundamental Research, 2011, 3:142-147. doi: 10.3103/S1541308X14030042
    [14] SELYATITSKAYA V G, PALCHIKOVA N A, KUZNETSOVA N V. Adrenocortical system activity in alloxan-resistant and alloxan-susceptible wistar rats[J]. Journal of Diabetes Mellitus, 2012, 2:165. doi: 10.4236/jdm.2012.22026
    [15] TSENG T F, YOU B, GAO H C, et al.. Pilot clinical study to investigate the human whole blood spectrum characteristics in the sub-THz region[J]. Optics Express, 2015, 23:9440-9451. doi: 10.1364/OE.23.009440
    [16] JEONG K, HUH Y M, KIM S H, et al.. Characterization of blood using terahertz waves[J]. Journal of Biomedical Optics, 2013, 18:107008-107008. doi: 10.1117/1.JBO.18.10.107008
    [17] ANGELUTS A, BALAKINA V, EVDOKIMOVM G, et al.. Characteristic responses of biological and nanoscale systems in the terahertz frequency range[J]. Quantum Electronics, 2014, 44:614. doi: 10.1070/QE2014v044n07ABEH015565
    [18] LARIN K V, ELEDRISI M S, MOTAMEDI M, et al.. Noninvasive blood glucose monitoring with optical coherence tomography:a pilot study in human subjects[J]. Diabetes Care, 2002, 25:2263-2267. doi: 10.2337/diacare.25.12.2263
    [19] TARR R V. Non-invasive blood glucose measurement system and method using stimulated raman spectroscopy: US, 5243983[P]. 1993-09-14.
    [20] THOMAS G H. Method and apparatus for non-invasive monitoring of blood glucose. US, 5119819[P]. 1992-06-09
    [21] POPOV A P, BYKOV A V, TOPPARI S, et al.. Glucose sensing in flowing blood and intralipid by laser pulse time-of-flight and optical coherence tomography techniques[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18:1335-1342. doi: 10.1109/JSTQE.2011.2175202
    [22] SMITH J. The Pursuit of Noninvasive Glucose[M]. 5th Edition. [S. l. ]: http://www.mendosa.com/noninvasive-glucose.pdf,2017.
    [23] SCHELLER M, DVRRSCHMIDT S F, STECHER M, et al.. Terahertz quasi-time-domain spectroscopy imaging[J]. Applied Optics, 2011, 50:1884. doi: 10.1364/AO.50.001884
    [24] BESPALOV V G, GORODETSKIǏ A, DENISYUK I Y, et al.. Methods of generating superbroad band terahertz pulses with femtosecond lasers[J]. Journal of Optical Technology, 2008, 5:636-642. http://www.researchgate.net/publication/249336946_Methods_of_generating_superbroadband_terahertz_pulses_with_femtosecond_lasers?ev=auth_pub
    [25] BESPALOV V G, GORODETSKY A A, GRACHEV Y V, et al.. Influence of THz broadband pulse radiation on some biotissues[J]. Proceedings of SPIE, 2009, 7547:754707. doi: 10.1117/12.855046
    [26] SHEFFIELD C A, KANE M P, BAKST G, et al.. Accuracy and precision of four value-added blood glucose meters:the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro[J]. Diabetes Technology & Therapeutics, 2009, 11:587-592. https://www.researchgate.net/publication/26822375_Accuracy_and_Precision_of_Four_Value-Added_Blood_Glucose_Meters_the_Abbott_Optium_the_DDI_Prodigy_the_HDI_True_Track_and_the_HypoGuard_Assure_Pro
    [27] BIESTER T, DANNE T, BLÄSIG S, et al.. Pharmacokinetic and prandial pharmacodynamic properties of insulin degludec/insulin aspart in children, adolescents, and adults with type 1 diabetes[J]. Pediatric Diabetes, 2016, 17:642-649. doi: 10.1111/pedi.2016.17.issue-8
    [28] BOGNER P, SIPOS K, LUDANY A, et al.. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes[J]. European Biophysics Journal, 2002, 31:145-152. doi: 10.1007/s00249-001-0198-7
    [29] JAIN S K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells[J]. Journal of Biological Chemistry, 1989, 64:21340-21345. http://www.ncbi.nlm.nih.gov/pubmed/2592379
    [30] SON J-H. Prospects in Medical Applications of Terahertz Waves and Conclusions[M]. Terahertz Biomedical Science and Technology, CRC Press, 2014: 347-350.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1903
  • HTML全文浏览量:  500
  • PDF下载量:  369
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-17
  • 修回日期:  2018-02-28
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!