留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于超短脉冲CO2激光的半导体光开关理论建模与数值分析

高月娟 陈飞 潘其坤 俞航航 李红超 田有朋

高月娟, 陈飞, 潘其坤, 俞航航, 李红超, 田有朋. 用于超短脉冲CO2激光的半导体光开关理论建模与数值分析[J]. 中国光学(中英文), 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159
引用本文: 高月娟, 陈飞, 潘其坤, 俞航航, 李红超, 田有朋. 用于超短脉冲CO2激光的半导体光开关理论建模与数值分析[J]. 中国光学(中英文), 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159
GAO Yue-juan, CHEN Fei, PAN Qi-kun, YU Hang-hang, LI Hong-chao, TIAN You-peng. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser[J]. Chinese Optics, 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159
Citation: GAO Yue-juan, CHEN Fei, PAN Qi-kun, YU Hang-hang, LI Hong-chao, TIAN You-peng. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser[J]. Chinese Optics, 2020, 13(3): 577-585. doi: 10.3788/CO.2019-0159

用于超短脉冲CO2激光的半导体光开关理论建模与数值分析

doi: 10.3788/CO.2019-0159
基金项目: 国家自然科学基金(No. 61675200);国家科技重大专项02专项(No. 2018ZX02102001-002);激光与物质相互作用国家重点实验室基金(No. SKLLIM1611);中国科学院青年创新促进会资助项目(No. 2017259)
详细信息
    作者简介:

    高月娟(1995—),女,山东东营人,硕士研究生,2017年于中国海洋大学获得学士学位,现为中国科学院长春光学精密机械与物理研究所光学工程硕士研究生,主要从事重复频率超短脉冲CO2激光器方面的研究。E-mail:gyjsnf@163.com

    陈 飞(1982—),男,河南南阳人,研究员,博士生导师,2011年于哈尔滨工业大学获得博士学位,现工作于中国科学院长春光学精密机械与物理研究所激光与物质相互作用国家重点实验室,主要从事高功率气体激光器及其应用方面的研究。E-mail:feichenny@126.com

  • 中图分类号: TN248.2

Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser

Funds: Supported by National Natural Science Foundation of China(No. 61675200); National Science and Technology Major Project 02(No. 2018ZX02102001-002); Open Fund Project of the State Key Laboratory of Laser and Material Interaction (No. SKLLIM1611); Youth Innovation Promotion Association (No. 2017259)
More Information
  • 摘要: 本文开展了基于半导体光开关技术实现超短脉宽CO2激光输出的物理机制研究。首先,在分析光生载流子过程及载流子复合扩散机制的基础上,引入直接吸收、俄歇复合、等离激元辅助复合以及双极扩散等物理过程,并基于Drude理论,完善了半导体光开关理论模型。其次,利用该模型对两级半导体光开关产生超短CO2脉冲机制进行了数值模拟及分析,结果显示该模型与国外最新实验结果一致,表明了模型的合理性与正确性。最后,利用该模型分析了控制光脉冲宽度对两级光开关工作效率的影响,发现短的控制光脉冲更有利于精确、高效地截取出高质量的超短CO2脉冲。本文研究证明半导体光开关法是实现超短CO2激光脉宽可调输出的有效技术途径。

     

  • 图 1  (a)反射光开关(b)透射光开关示意图

    Figure 1.  Schematic diagrams of (a) reflection switch (b) transmission switch.

    图 2  脉宽为20 ps,能量密度为0.6 mJ/cm2,波长为1.06 μm控制光脉冲辐照下半导体表面等离子体密度随时间变化曲线

    Figure 2.  Surface density of plasma in germanium plotted as a function of time under the radiation of 1.06-μm control pulse with pulse width of 20 ps and energy density of 0.6 mJ/cm2.

    图 3  控制光消失后表面等离子体密度随时间变化曲线

    Figure 3.  Surface density of plasma in germanium plotted as a function of time after the control pulse vanishing

    图 4  CO2光脉冲垂直入射反射光开关输出脉冲能量变化曲线

    Figure 4.  Calculated vertical reflected pulse energy plotted as a function of time

    图 5  CO2光脉冲以布鲁斯特角入射反射光开关输出脉冲能量变化

    Figure 5.  Calculated Brewster′s angle reflected pulse energy plotted as a function of time

    图 6  单级半导体反射开关输出的CO2光脉冲

    Figure 6.  CO2 pulse output from single-stage semiconductor switching

    图 7  单级半导体反射开关表面等离子体密度随时间变化曲线

    Figure 7.  Surface density of plasma in single-stage semiconductor switching plotted as a function of time

    图 8  两级半导体光开关在5、10、15、20 ps延迟时间下输出CO2脉冲能量

    Figure 8.  CO2 pulse energy outputs from two-stage semiconductor switching with time delay of 5, 10, 15 and 20 ps

    图 9  脉宽为6、10、30、60 ps的控制光脉冲辐照单级反射开关得到CO2脉冲能量

    Figure 9.  CO2 pulse energies obtained by using controlled light pulse with pulse widths of 6, 10, 30, 60 ps to radiate single–stage reflection switch

    图 10  脉宽分别为6 ps(左)和60 ps(右)控制光脉冲辐照两级反射开关输出CO2脉冲能量

    Figure 10.  CO2 pulse outputs from two-stage semiconductor switching radiated by control pulse with pulse duration of 6 ps (left) and 60 ps (right), respectively.

  • [1] POGORELSKY I V, YAKIMENKO V, POLYANSKIY M, et al. Ultrafast CO2 laser technology: application in ion acceleration[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 6(20): 67-70.
    [2] PIGEON J J, TOCHITSKY S Y, GONG C, et al. Supercontinuum generation from 2 to 20 μm in GaAs pumped by picosecond CO2 laser pulses[J]. Optics Letters, 2014, 39(11): 3246-3249. doi: 10.1364/OL.39.003246
    [3] BABZIEN M, POGORELSKY I V, POLYANSKIY M. Design and applications of the Brookhaven 100 TW CO2 laser[C]. Research in Optical Sciences, OSA, 2014: JW2A.25.
    [4] SIEMON C, KHUDIK V, AUSTIN Y S, et al. Laser-seeded modulation instability in a proton driver plasma wake field accelerator[J]. Physics of Plasmas, 2013, 20(10): 103111. doi: 10.1063/1.4825245
    [5] KESSELRING R, KALIN A W, SCHOTZAU H J, et al. Picosecond CO2 laser-pulse generation and amplification[J]. IEEE Journal of Quantum Electronics, 1993, 29(3): 997-1005. doi: 10.1109/3.206584
    [6] HABERBERGER D, TOCHITSKY S, JOSHI C. Fifteen terawatt picosecond CO2 laser system[J]. Optics Express, 2010, 18(17): 17865-17875. doi: 10.1364/OE.18.017865
    [7] 谢冀江, 李殿军, 张传胜, 等. 声光调Q CO2激光器[J]. 光学 精密工程,2009,17(5):1008-1013.

    XIE J J, LI D J, ZHANG CH SH, et al. Acousto-optically Q-switched CO2 laser[J]. Optics and Precision Engineering, 2009, 17(5): 1008-1013. (in Chinese)
    [8] ALCOCK A J, CORKUM P B, JAMES D J. A fast scalable switching technique for high-power CO2 laser radiation[J]. Applied Physics Letters, 1975, 27(12): 680-682. doi: 10.1063/1.88336
    [9] POGORELSKY I V, BEN-ZVI I, BABZIEN M, et al. First picosecond terawatt CO2 laser[J]. Proceedings of SPIE, 1998, 3683: 15-24. doi: 10.1117/12.334820
    [10] APOLLONOV V V, KAZAKOV K K, PLETNYEV N V, et al. Picosecond terawatt CO2 laser system: picasso-2[J]. Proceedings of SPIE, 2003, 5120: 291-296.
    [11] JAMISON S A, NURMIKKO A V, GERRITSEN H J. Fast transient spectroscopy of the free-carrier plasma edge in Ge[J]. Applied Physics Letters, 1976, 29(10): 640-643. doi: 10.1063/1.88908
    [12] HEIN P C, GALLANT M I, VAN DRIEL H M. Influence of excitation wavelength on the reflectivity of photogenerated plasmas in germanium[J]. Solid State Communications, 1981, 39(4): 601-604. doi: 10.1016/0038-1098(81)90330-6
    [13] GALLANT M I, VAN DRIEL H M. Infrared reflectivity probing of thermal and spatial properties of laser-generated carriers in germanium[J]. Physical Review B, 1982, 26(4): 2133-2146. doi: 10.1103/PhysRevB.26.2133
    [14] ALCOCK A J, CORKUM P B. Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors[J]. Canadian Journal of Physics, 1979, 57(9): 1280-1290. doi: 10.1139/p79-176
    [15] 董文甫, 王启明, 杨沁清, 等. 锗硅量子阱中近带边光跃迁的理论和实验研究[J]. 发光学报,1996,17(4):311-316. doi: 10.3321/j.issn:1000-7032.1996.04.004

    DONG W F, WANG Q M, YANG Q Q, et al. The theoretical and experimental research of the near-band-gap optical transition in SiGe/Si quantum well[J]. Chinese Journal of Luminescence, 1996, 17(4): 311-316. (in Chinese) doi: 10.3321/j.issn:1000-7032.1996.04.004
    [16] 张希清, 秦伟平, 赵家龙, 等. 用非相干光时间延迟四波混频测量TiO2超微粒子的扩散系数及载流子复合时间[J]. 发光学报,1993,14(3):231-236. doi: 10.3321/j.issn:1000-7032.1993.03.004

    ZHANG X Q, QIN W P, ZHAO J L, et al. Measuring carrier recombination time and diffusion coefficient of TiO2 using time-delayed four-wave mixing with incoherent light[J]. Chinese Journal of Luminescence, 1993, 14(3): 231-236. (in Chinese) doi: 10.3321/j.issn:1000-7032.1993.03.004
    [17] ELCI A, SCULLY M O, SMIRL A L, et al. Ultrafast transient response of solid-state plasmas. I. Germanium, theory, and experiment[J]. Physical Review B, 1977, 16(1): 191-221. doi: 10.1103/PhysRevB.16.191
    [18] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2008.

    LIU E K, ZHU B SH, LUO J SH. Semiconductor Physics[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese)
    [19] ZIMAN J M. Principles of the Theory of Solids[M]. Cambridge: Cambridge University Press, 1972.
    [20] MALVEZZI A M, HUANG C Y, KURZ H, et al. Time-resolved spectroscopy of plasma resonances in highly excited silicon and germanium[J]. MRS Proceedings, 1985, 51: 201. doi: 10.1557/PROC-51-201
    [21] AUSTON D H, SHANK C V, LEFUR P. Picosecond optical measurements of band-to-band Auger recombination of high-density plasmas in germanium[J]. Physical Review Letters, 1975, 35(15): 1022-1025. doi: 10.1103/PhysRevLett.35.1022
    [22] 米宝永. 锗的红外折射率精密测量[J]. 光学 精密工程,1998,6(4):123-126.

    MI B Y. Precision measurement of the infrared refractive index for germanium sample[J]. Optics and Precision Engineering, 1998, 6(4): 123-126. (in Chinese)
    [23] RASOLT M, MALVEZZI A M, KURZ H. Plasmon-phonon-assisted electron-hole recombination in silicon at high laser fluence[J]. Applied Physics Letters, 1987, 51(26): 2208-2210. doi: 10.1063/1.98942
  • 加载中
图(10)
计量
  • 文章访问数:  3081
  • HTML全文浏览量:  1690
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-08-30
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!