留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3种主动合成孔径成像技术极限探测能力的分析与比较

董磊 卢振武 刘欣悦

董磊, 卢振武, 刘欣悦. 3种主动合成孔径成像技术极限探测能力的分析与比较[J]. 中国光学(中英文), 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138
引用本文: 董磊, 卢振武, 刘欣悦. 3种主动合成孔径成像技术极限探测能力的分析与比较[J]. 中国光学(中英文), 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138
DONG Lei, LU Zhen-wu, LIU Xin-yue. Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques[J]. Chinese Optics, 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138
Citation: DONG Lei, LU Zhen-wu, LIU Xin-yue. Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques[J]. Chinese Optics, 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138

3种主动合成孔径成像技术极限探测能力的分析与比较

doi: 10.3788/CO.20191201.0138
基金项目: 

国家自然科学基金 11703024

航天系统部装备预先研究项目 30XXXX10201

详细信息
    作者简介:

    董磊(1982-), 男, 山东金乡人, 博士, 副研究员, 2004年、2007年于山东大学分别获得学士和硕士学位, 主要从事物理光学和激光技术方面的研究。E-mail:nodepression@126.com

  • 中图分类号: V557

Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques

Funds: 

National Natural Science Foundation of China 11703024

Research in Advance of Spaceflight System Department 30XXXX10201

More Information
  • 摘要: 为了深入研究可行的中高轨成像技术,本文从探测能力角度(用最低发射激光功率表示)深入分析和比较3种主动干涉合成孔径成像技术——傅立叶望远镜(又称为相干场成像或条纹场扫描成像)、成像相关术(又称为强度相关成像)和剪切光束成像。本文利用光电倍增管的信噪比模型和激光作用距离方程,较为细致地分析每种技术在满足单次信噪比(SNR=5)条件下的极限探测能力。通过仿真分析得出:傅立叶望远镜、成像相关术和剪切光束成像所需的最低单光束单脉冲能量分别为11.4 J、0.73 MJ和3.1 MJ。最终得出傅立叶望远镜是上述3种主动成像技术中在目前技术水平下最适合中高轨目标(约36 000 km)高分辨成像的可用技术的结论。

     

  • 图 1  傅立叶望远镜系统示意图

    Figure 1.  Scheme of imaging system of Fourier telescopy

    图 2  图像重构示意图

    Figure 2.  Scheme of image reconstruction

    图 3  成像相关术概念示意图

    Figure 3.  Conceptual scheme of imaging correlography

    图 4  成像相关术恢复流程

    Figure 4.  Retrieval diagram of imaging correlography

    图 5  剪切光束成像概念图

    Figure 5.  Conception diagram of sheared-beam imaging

    图 6  剪切光束成像恢复流程图

    Figure 6.  Retrieval diagram of sheared-beam imaging

    图 7  3种主动成像技术探测能力的分析流程图

    Figure 7.  Flow chart of detection capability analysis for 3 kinds of active imaging technologies

    表  1  傅立叶望远镜探测能力计算参数

    Table  1.   Calculation parameters of detection capability of Fourier telescope

    Items Values
    Wavelength and band (532±5) nm
    range 36 000 km
    Skylight background 0.08 W/(m2·sr)
    Transmittance of emitter optics 0.4
    Shape factor of emitting beam 2
    Cube angle of emitting beam 1.26×10-9 rad2
    Area of object π*(5m)2/4
    Reflectance of object 0.3
    Cube angle of object reflection
    Area of receiver 40×(10m)2
    Field of view of receiver 2 mrad
    Transmittance of atmosphere 0.8
    Transmittance of receiver 0.48
    Signal to noise ratio of detection 5
    Quantum efficiency of photomultiplier tube 0.13
    Dark current 5×10-15 A
    Working bandwidth 1.44 MHz
    Integral time 10 ns
    下载: 导出CSV

    表  2  成像相关术探测能力计算参数

    Table  2.   Calculation parameters of detection capability of imaging correlography

    Items Values
    Wavelength and band (532±5) nm
    range 36 000 km
    Skylight background 0.08 W/(m2·sr)
    Transmittance of emitter optics 0.4
    Shape factor of emitting beam 2
    Cube angle of emitting beam 1.26×10-9 rad2
    Area of object π*(5m)2/4
    Reflectance of object 0.3
    Cube angle of object reflection
    Area of receiver 3.38 m2
    Field of view of receiver 2 mrad
    Transmittance of atmosphere 0.8
    Transmittance of receiver 0.48
    Signal to noise ratio of detection 5
    Quantum efficiency of photomultiplier tube 0.13
    Dark current 5×10-15 A
    Working bandwidth 60 MHz
    Integral time 10 ns
    下载: 导出CSV

    表  3  剪切光束成像探测能力计算参数

    Table  3.   Calculation parameters of detection capability of sheared-beam imaging

    Items Values
    Wavelength and band (532±5) nm
    range 36 000 km
    Skylight background 0.08 W/(m2·sr)
    Transmittance of emitter optics 0.4
    Shape factor of emitting beam 2
    Cube angle of emitting beam 1.26×10-9 rad2
    Area of object π*(5m)2/4
    Reflectance of object 0.3
    Cube angle of object reflection
    Area of receiver 3.67 m2
    Field of view of receiver 2 mrad
    Transmittance of atmosphere 0.8
    Transmittance of receiver 0.48
    Signal to noise ratio of detection 5
    Quantum efficiency of photomultiplier tube 0.13
    Dark current 5×10-15 A
    Working bandwidth 1.44 MHz
    Integral time 10 ns
    下载: 导出CSV

    表  4  3种成像技术的最低激光发射功率(能量)

    Table  4.   Lowest laser emitting powers(energies) of three imaging techniques

    Summit power of single beam Pulse energy of single beam
    Fourier telescope 1.14 GW 11.4 J
    Imaging correlography 73.4 TW 0.73 MJ
    Sheared-beam imaging 310 TW 3.1 MJ
    下载: 导出CSV
  • [1] LOUIS S. Estimator and signal-to-noise ratio for an integrative synthetic aperture imaging technique[J]. Applied Optics, 1991, 30(2):206-213. doi: 10.1364/AO.30.000206
    [2] DAVID G V, JOHN F B, LAURA U, et al.. Ground-to-space laser imaging: review 2001[C]. SPIE, 2002, 4489: 35-47.
    [3] GREENAWAY A H. The signal-to-noise ratio in long-baseline stellar interferometry[J]. Optica Acta, 1979, 26(9):1147-1171. doi: 10.1080/713820126
    [4] JAMES J B, JAMES B B. Passive imaging through the turbulent atmosphere:fundamental limits on the spatial frequency resolution of a rotational shearing interferometer[J]. J. Opt. Soc. Am., 1978, 68(1):67-77. doi: 10.1364/JOSA.68.000067
    [5] 罗秀娟, 张羽, 孙鑫, 等.大气环境中傅立叶望远镜系统能量设计[J].光学学报, 2013, 33(8):0801004-1-8.

    LUO X J, ZHANG Y, SUN X, et al.. Energy design of Fourier telescope system in the atmospheric environment[J]. Acta Optica Sinica, 2013, 33(8):0801004-1-8.(in Chinese)
    [6] GAMIZ V, HOLMES R B, CZYZAK S R, et al.. GLINT: program overview and potential science objectives[C]. SPIE, 2000, 4091: 304-315.
    [7] 于树海, 王建立, 董磊, 等.基于最小二乘法拟合估计傅立叶望远镜的缺失分量[J].光学精密工程, 2015, 23(1):282-287.

    YU SH H, WANG J L, DONG L, et al.. Estimation of missing component of Fourier telescopy based on least square fitting[J]. Opt. Precision Eng., 2015, 23(1):282-287.(in Chinese)
    [8] 于树海, 王建立, 董磊, 等.基于非均匀周期采样的傅立叶望远镜时域信号采集方法[J].中国光学, 2013, 6(3):395-401. http://www.chineseoptics.net.cn/CN/abstract/abstract8935.shtml

    YU SH H, WANG J L, DONG L, et al.. Time region signal collecting method of Fourier telescopy based on non-uniform periodically sampling[J]. Chinese Optics, 2013, 6(3):395-401.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8935.shtml
    [9] 周志盛, 相里斌, 张文喜, 等.基于迭代的傅立叶望远镜图像重构方法[J].光学学报, 2014, 34(5):0511005-1-7. https://max.book118.com/html/2015/0625/19712669.shtm

    ZHOU ZH SH, XIANG L B, ZHANG W X, et al.. Image reconstruction method of Fourier telescope based on iteration[J]. Acta Optica Sinica, 2014, 34(5):0511005-1-7.(in Chinese) https://max.book118.com/html/2015/0625/19712669.shtm
    [10] FIENUP J R, IDELL P S. Imaging correlography with sparse arrays of detectors[J]. Opt. Eng., 1988, 27:778-784.
    [11] 梁振宇, 樊祥, 程正东, 等.任意阶运动目标强度关联成像[J].红外与激光工程, 2017, 46(8):0824002-1-8. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201708038

    LIANG ZH Y, FAN X, CHENG ZH D, et al.. N-th order intensity correlated imaging for moving target[J]. Infrared and Laser Engineering, 2017, 46(8):0824002-1-8.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201708038
    [12] 梅笑冬, 龚文林, 严毅, 等.可预置激光三维强度关联成像雷达实验研究[J].中国激光, 2016, 43(7):0710003-1-9.

    MEI X D, GONG W L, YAN Y, et al.. Experimental research on prebuilt three-dimensional imaging ladar[J]. Chinese Journal of Lasers, 2016, 43(7):0710003-1-9.(in Chinese)
    [13] HUTCHIN R A. Sheared coherent interferometric photography[C]. SPIE, 1993, 2029: 161-168.
    [14] 陈明徕, 罗秀娟, 张羽, 等.基于全相位谱分析的剪切光束成像目标重构[J].物理学报, 2017, 66(2):024203-1-6. http://d.old.wanfangdata.com.cn/Periodical/wlxb201702016

    CHEN M L, LUO X J, ZHANG Y, et al.. Sheared-beam imaging target reconstruction based on all-phase spectrum analysis[J]. Acta Physica Sinica, 2017, 66(2):024203-1-6.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201702016
    [15] HAMAMATSU PHOTONICS K K. Photomultiplier Tubes:Basics and Applications(3 edition)[M]. Tokyo:Hamamatsu Photonics Press, 2007:73-77.
    [16] 徐正平, 许永森, 姚园, 等.凝视型激光主动成像系统性能验证[J].光学精密工程, 2017, 25(6):1441-1448. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706006

    XU ZH P, XU Y S, YAO Y, et al.. Performance verification of staring laser active imaging system[J]. Opt. Precision Eng., 2017, 25(6):1441-1448.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706006
    [17] 李明, 薛莉, 黄晨, 等.基于有效回波概率估计空间碎片激光测距系统作用距离[J].光学精密工程, 2016, 24(2):260-267. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201602003

    LI M, XUE L, HUANG CH, et al.. Estimation of detection range for space debris laser ranging system based on efficient echo probability[J]. Opt. Precision Eng., 2016, 24(2):260-267.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201602003
    [18] STEVEN M S, RICHARD K, PAUL F, et al.. Sheared-beam coherent image reconstruction[C]. SPIE, 1996, 2847: 150-158.
    [19] 饶瑞中.现代大气光学[M].北京:科学出版社, 2012:330-333.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing:Science Press, 2012:330-333.(in Chinese)
    [20] 胡益华, 曹必松, 魏斌, 等.9.7 GHz高频窄带高温超导滤波器设计[J].低温物理学报, 2005, 27(4):371-374. doi: 10.3969/j.issn.1000-3258.2005.04.015

    HU Y H, CAO B S, WEI B, et al.. A high-frequency and narrow-band HTS filter at 9.7 GHz[J]. Chinese Journal of Low Temperature Physics, 2005, 27(4):371-374.(in Chinese) doi: 10.3969/j.issn.1000-3258.2005.04.015
    [21] 杨丽萍, 万飞, 杨思川, 等.四硼酸锂在高频窄带滤波器上的应用探讨[J].压电与声光, 2014, 36(1):27-31. doi: 10.3969/j.issn.1004-2474.2014.01.007

    YANG L P, WAN F, YANG S CH, et al.. Discussion on application of LBO for high-frequency and Narrow-band filters[J]. Piezoelectrics & Acoustooptics, 2014, 36(1):27-31.(in Chinese) doi: 10.3969/j.issn.1004-2474.2014.01.007
    [22] 邓克强, 邓其贤, 何玉民.掠面体波高频极窄带滤波器[J].火控雷达技术, 1986(3):40-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001388164

    DENG K Q, DENG Q X, HE Y M. High frequency extremely narrow band filter based on sweeping surface body wave[J]. Fire Control Radar Technology, 1986(3):40-43.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001388164
    [23] RODDIER F. Interferometric imaging in optical astronomy[J]. Physics Reports, 1988, 170(2):97-166. doi: 10.1016/0370-1573(88)90045-2
    [24] THOMPSON A R, JAMES M M, GEORGE W S J. Interferometry and Synthesis in Radio Astronomy[M]. Switzerland:Springer, 2016, 835.
    [25] STEVEN M S, RICHARD K, PAUL F, et al.. Sheared-beam coherent image reconstruction[C]. SPIE, 1996, 2847: 150-158.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2460
  • HTML全文浏览量:  916
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-17
  • 修回日期:  2017-12-14
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!