留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子束硅片图形检测系统中的纳米级对焦控制技术

郭杰 李世光 赵焱 宗明成

郭杰, 李世光, 赵焱, 宗明成. 电子束硅片图形检测系统中的纳米级对焦控制技术[J]. 中国光学(中英文), 2019, 12(2): 242-255. doi: 10.3788/CO.20191202.0242
引用本文: 郭杰, 李世光, 赵焱, 宗明成. 电子束硅片图形检测系统中的纳米级对焦控制技术[J]. 中国光学(中英文), 2019, 12(2): 242-255. doi: 10.3788/CO.20191202.0242
GUO Jie, LI Shi-guang, ZHAO Yan, ZONG Ming-cheng. Nano-scale focus control technology in electron beam wafer pattern inspection system[J]. Chinese Optics, 2019, 12(2): 242-255. doi: 10.3788/CO.20191202.0242
Citation: GUO Jie, LI Shi-guang, ZHAO Yan, ZONG Ming-cheng. Nano-scale focus control technology in electron beam wafer pattern inspection system[J]. Chinese Optics, 2019, 12(2): 242-255. doi: 10.3788/CO.20191202.0242

电子束硅片图形检测系统中的纳米级对焦控制技术

doi: 10.3788/CO.20191202.0242
基金项目: 

极大规模集成电路制造装备及成套工艺(国家02专项)资助项目 2012ZX02701004

详细信息
    作者简介:

    郭杰(1993-), 男, 陕西西安人, 硕士研究生, 主要从事集成电路先导工艺与仪器装备等方面的研究。E-mail:guojie1@ime.ac.cn

    李世光(1973-), 女, 辽宁沈阳人, 博士, 副研究员, 主要从事光电检测技术及光学工程方面的研究。E-mail:lishiguang@tsinghua.org.cn

  • 中图分类号: TP394.1;TH691.9

Nano-scale focus control technology in electron beam wafer pattern inspection system

Funds: 

Program of Manufacturing Equipment and Complete Process of Very Large Scale Integration Circuits of China 2012ZX02701004

More Information
  • 摘要: 带电粒子束成像检测技术是一种可以提供纳米级测量精度的技术,广泛应用于半导体检测中。在进行硅片检测时,要求待测硅片在扫描检测过程中一直处于电子束的焦深范围(DoF)内。本文提出一种毫米级控制范围、纳米级控制精度、高度测量时间在亚毫秒量级的粗精结合的闭环硅片高度控制技术。它的核心子系统是一套光学硅片高度测量系统,在进行粗控制时,数字相机的成像面作为一个光栅图像接收面,硅片的高度信息通过测量光栅线条在成像面上的位移获得。在接近目标高度时,数字相机的成像面作为一个虚拟的数字光栅使用。它与光学光栅图像存在一定周期差,两者构成类似机械游标卡尺的结构,本文称为光学游标卡尺,实验表明该技术可以在成像面上细分像素尺寸10×以上。当用其测量硅片高度时,粗测范围达毫米量级,粗测时间小于0.38 ms,精测分辨率小于80 nm,精测时间小于0.09 ms。利用该硅片高度测量系统进行硅片高度的初步闭环反馈控制,控制精度达到15 nm,在电子束硅片图形检测系统中具有广阔的应用前景。

     

  • 图 1  相机成像面上的光学光栅图像示意图

    Figure 1.  Schematic of optical grating on the imaging plane

    图 2  (a) 合成光栅图像C1,(b)合成光栅图像C2

    Figure 2.  (a)Synthetic grating image C1; (b)Synthetic grating image C2

    图 3  j变化的积分光强曲线

    Figure 3.  Integrated intensities vary with j

    图 4  j变化的归一化积分光强差分曲线

    Figure 4.  Normalized differentiation curves of integrated intensity vs j

    图 5  验证光学游标卡尺测量位移原理仿真实验结果(a)光学光栅图像A; (b)数字光栅B; (c)合成光栅图像C1; (d)随数字光栅周期变化的积分光强曲线I1I2; (e)当光栅移动2个像素时,归一化积分光强差分曲线I的变化

    Figure 5.  Simulation results of displacement measurement principle of optical vernier caliper. (a)Optical grating image A; (b)digital grating B; (c)synthetic grating image C1; (d)integrated intensity curves I1 and I2 change with digital grating periods; (e)the variation of the normalized integrated intensity differentiation curve I when the optical grating moves 2 pixels

    图 6  硅片高度测量系统示意图

    Figure 6.  Schematic of wafer height measurement system

    图 7  粗精结合的闭环控制反馈方案

    Figure 7.  Close-loop focus control flow combined with coarse control and fine control

    图 8  测试平台示意图

    Figure 8.  Schematic of the test bench

    图 9  测试平台实物

    Figure 9.  Physical test bench

    图 10  光学光栅图像

    Figure 10.  Optical grating image

    图 11  相机上光栅位移与z向位移台位移的关系曲线

    Figure 11.  Relationship between the grating displacement on the camera and the displacement of the z stage

    图 12  测量系统分辨率使用的系列图像或曲线。(a)数字光栅B;(b)合成图像C1;(c)积分光强曲线;(d)归一化积分光强差曲线;(e)对准点随硅片位置移动的关系

    Figure 12.  A series of images or curves used for measurement resolution test. (a)Digital grating B; (b)synthetic image C1; (c)integrated intensity curves; (d)normalized integrated intensity differentiation curve; (e)relationship between the alignment points and the wafer translation

    图 13  粗测与精测结果对比

    Figure 13.  Comparison between coarse measurement and fine measurement results

    图 14  目标位置与闭环控制结束后的I曲线

    Figure 14.  I curves before and after close-loop control

    表  1  硅片高度测量系统测量时间

    Table  1.   Measurement time of the wafer height measurement system

    (Unit: ms)
    次数 粗测 精测 次数 粗测 精测
    1 0.36 0.09 9 0.37 0.09
    2 0.37 0.09 10 0.37 0.09
    3 0.37 0.09 11 0.37 0.09
    4 0.37 0.09 12 0.37 0.09
    5 0.37 0.09 13 0.37 0.09
    6 0.38 0.09 14 0.37 0.09
    7 0.37 0.09 15 0.37 0.09
    8 0.38 0.09
    下载: 导出CSV
  • [1] CASS T R, HENDRICKS D, JAU J, et al.. Application of the SEMSpec electron-beam inspection system to in-process defect detection on semiconductor wafers[J]. Microelectronic Engineering, 1996, 30(1-4):567-570. doi: 10.1016/0167-9317(95)00311-8
    [2] OBERAI A, YUAN J S. Smart E-beam for defect identification & analysis in the nanoscale technology nodes:technical perspectives[J]. Electronics, 2017, 6(4):87. doi: 10.3390/electronics6040087
    [3] WILSON L. International technology roadmap for semiconductors-ITRS[R]. Washington: Semiconductor Industry Association, 2013.
    [4] MEISBURGER D, BRODIE A D, CHADWICK C, et al.. Electron beam inspection system and method: US, 5502306[P]. 1996-03-26.
    [5] WARD B W, NOTTE J A, FARKAS L S, et al.. Ion sources, systems and methods: US, 9236225[P]. 2016-01-12.
    [6] ZAFAR K, KEKARE S, CHANG E, et al.. Methods and systems for utilizing design data in combination with inspection data: US, 8923600[P]. 2014-12-30.
    [7] 许志涛, 龙科慧, 刘金国, 等.空间相机调焦机构精度检测系统设计[J].液晶与显示, 2013, 28(6):943-947. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201306024

    XU ZH T, LONG K H, LIU J G, et al.. Design of focusing mechanism accuracy detection system of space camera[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(6):943-947.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201306024
    [8] BLAIR W W, DORAN S K, LANGNER G O. Automatic focus and deflection correction in E-beam system using optical target height measurements: US, 4468565[P]. 1984-08-28.
    [9] COLLOPY T K, HAIRE D F. High resolution automatic focus correction electronic subsystem for E-beam lithography: US, 4821196[P]. 1989-04-11.
    [10] DORAN S K, ENICHEN W A, GROVES T R, et al.. Electron beam nano-metrology system: US, 5585629[P]. 1996-12-17.
    [11] 王涛, 张涛, 张春光, 等.狭缝光栅分光特性及其对视区的影响[J].液晶与显示, 2013, 28(1):59-63. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201301011

    WANG T, ZHANG T, ZHANG CH G, et al.. Optical properties of parallax barrier and it's influence on view zone[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(1):59-63.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201301011
    [12] WATANABE M, TAKEDA M, HAYAKAWA K, et al.. Charged particle beam apparatus and method for automatically correcting astigmatism and for height detection: US, 20060060781[P]. 2006-03-23.
    [13] SHIMIZU Y. Method for measuring resolution of charged particle beam and charged particle beam drawing apparatus: US, 20180040456[P]. 2018-02-18.
    [14] WANG J, NGUYEN V D, WANG Y X, et al.. Dynamic focus adjustment with optical height detection apparatus in electron beam system: US, 9400176[P]. 2016-07-26.
    [15] WANG Y X, NGUYEN V D, ZHANG J. Optical auto focusing system and methord for electron beam inspection tool: US, 20080302974[P]. 2008-12-11.
    [16] FABIJANSKA A. Subpixel edge detection in blurry and noisy images[J]. International Journal of Computer Science & Applications, 2015, 12(2):1-19.
    [17] GUIZAR-SICAIROS M, THURMAN S T, FIENUP J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2):156-158. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025592948/
    [18] ROSTYKU-SICAIROS M, ROSSI M, MOSER C. Compact lensless subpixel resolution large field of view microscope[J]. Optics Letters, 2018, 43(8):1654-1657. doi: 10.1364/OL.43.001654
    [19] 陈晓东, 李为民, 李静, 等.利用重心法求光斑信号位置的误差分析[J].光学技术, 2000, 26(1):5-8. doi: 10.3321/j.issn:1002-1582.2000.01.005

    CHEN X D, LI W M, LI J, et al.. Error analysis of the center of gravity method when used to get the position of a facula[J]. Optical Technique, 2000, 26(1):5-8.(in Chinese) doi: 10.3321/j.issn:1002-1582.2000.01.005
    [20] 李朝辉, 武克用.图像矩心内插法在空间相机实时检焦中的应用[J].光学 精密工程, 2000, 8(4):335-339. doi: 10.3321/j.issn:1004-924X.2000.04.008

    LI CH H, WU K Y. Application of centroid sensing method in real-time autofocusing system used in space camera[J]. Opt. Precision Eng., 2000, 8(4):335-339.(in Chinese). doi: 10.3321/j.issn:1004-924X.2000.04.008
    [21] 谢伦治, 卞洪林, 王振华.面阵探测器的像点亚像素定位研究[J].光学与光电技术, 2003, 1(2):51-56. doi: 10.3969/j.issn.1672-3392.2003.02.014

    XIE L ZH, BIAN H L, WANG ZH H. Study of the subpixel interpolation of image spots with matrix detectors[J]. Optics & Optoelectronic Technology, 2003, 1(2):51-56.(in Chinese) doi: 10.3969/j.issn.1672-3392.2003.02.014
    [22] 王海涌, 黄江艳.CCD视频幅值调节器的设计及目标精确定位算法[J].光学 精密工程, 2008, 16(6):1105-1109. doi: 10.3321/j.issn:1004-924X.2008.06.022

    WANG H Y, HUANG J Y. Design of CCD video amplitude controller and target precise locating algorithm[J]. Opt. Precision Eng., 2008, 16(6):1105-1109.(in Chinese) doi: 10.3321/j.issn:1004-924X.2008.06.022
    [23] 王林波, 王延杰, 邸男, 等.基于几何特征的圆形标志点亚像素中心定位[J].液晶与显示, 2014, 29(6):1003-1009. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201406024

    WANG L B, WANG Y J, DI N, et al.. Subpixel location of circle target center based on geometric features[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(6):1003-1009.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201406024
    [24] BOONMAN M E J, BROODBAKKER P J M, NIJMEIJER G J, et al.. Off-axis levelling in lithographic projection apparatus: US, 20040130691[P]. 2004-07-08.
    [25] HIDAKA Y, NAGAYAMA T. Surface position detection apparatus, exposure apparatus, and exposure method: US, 9927713[P]. 2018-03-27.
    [26] DENBOEF A J. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing[J]. Surface Topography:Metrology and Properties, 2016, 4(2):023001. doi: 10.1088/2051-672X/4/2/023001
    [27] 节德刚, 刘延杰, 孙立宁, 等.基于双光栅尺的高速高精度位移测量方法[J].光学 精密工程, 2007, 15(7):1077-1083. doi: 10.3321/j.issn:1004-924X.2007.07.014

    JIE D G, LIU Y J, SUN L N, et al.. A high speed and high precision displacement measurement methord using double grating scales[J]. Opt. Precision Eng., 2007, 15(7):1077-1083.(in Chinese) doi: 10.3321/j.issn:1004-924X.2007.07.014
    [28] 吴耀春, 萧泽新.基于光栅检测的显微镜闭环扫描控制系统的设计[J].光学与光电技术, 2008, 6(2):71-73, 77. doi: 10.3969/j.issn.1672-3392.2008.02.019

    WU Y CH, XIAO Z X. Design of microscopical closed-loop scanning and control system based on grating checks[J]. Optics & Optoelectronic Technology, 2008, 6(2):71-73, 77.(in Chinese) doi: 10.3969/j.issn.1672-3392.2008.02.019
    [29] RAKHMANOV M, EVANS M, YAMAMOTO H. An optical vernier technique for in situ measurement of the length of long Fabry-Perot cavities[J]. Measurement Science and Technology, 1999, 10(3):190-194. doi: 10.1088/0957-0233/10/3/013
    [30] CHEN F F, FENG J, HONG ZH W. Digital sun sensor based on the optical vernier measuring principle[J]. Measurement Science and Technology, 2006, 17(9):2494-2498. doi: 10.1088/0957-0233/17/9/017
    [31] 赵斌.环栅图像的数字莫尔条纹扫描定中方法[J].光学 精密工程, 2002, 10(1):19-24. doi: 10.3321/j.issn:1004-924X.2002.01.004

    ZHAO B. Digital moire fringe scanning method for centering ring grating images[J]. Opt. Precision Eng., 2002, 10(1):19-24.(in Chinese). doi: 10.3321/j.issn:1004-924X.2002.01.004
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  2598
  • HTML全文浏览量:  1058
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-23
  • 修回日期:  2018-05-04
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!