留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续激光辐照下的TiO2薄膜热传导性质

李代林 杨丹 崔纪琨 王宁 朱化凤

李代林, 杨丹, 崔纪琨, 王宁, 朱化凤. 连续激光辐照下的TiO2薄膜热传导性质[J]. 中国光学(中英文), 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628
引用本文: 李代林, 杨丹, 崔纪琨, 王宁, 朱化凤. 连续激光辐照下的TiO2薄膜热传导性质[J]. 中国光学(中英文), 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628
LI Dai-lin, YANG Dan, CUI Ji-kun, WANG Ning, ZHU Hua-feng. Heat conduction properties of TiO2 films irradiated by a continuous laser[J]. Chinese Optics, 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628
Citation: LI Dai-lin, YANG Dan, CUI Ji-kun, WANG Ning, ZHU Hua-feng. Heat conduction properties of TiO2 films irradiated by a continuous laser[J]. Chinese Optics, 2019, 12(3): 628-637. doi: 10.3788/CO.20191203.0628

连续激光辐照下的TiO2薄膜热传导性质

doi: 10.3788/CO.20191203.0628
基金项目: 

国家自然科学基金重大项目 61890964

国家重点研发计划项目 2017YFC1404000

国家科技重大专项 2017ZX05019-006

山东省重点研发计划项目 GG201809250065

中央高校基本科研业务费专项资金 19CX05003A-10

中央高校基本科研业务费专项资金 18CX02046A

详细信息
    作者简介:

    李代林(1973-), 男, 山东青岛人, 副教授, 2004年于上海光学精密机械研究所获得光学工程博士学位, 现为中国石油大学(华东)理学院副教授, 主要从事偏振光相关方面的研究。E-mail:qd_ldl@upc.edu.cn

  • 中图分类号: O436

Heat conduction properties of TiO2 films irradiated by a continuous laser

Funds: 

Major Program of the National Natural Science Foundation of China 61890964

National Key Research and Development Program Project 2017YFC1404000

National Science and Technology Major Project 2017ZX05019-006

Key Research and Development Project of Shandong Province GG201809250065

Fundamental Research Funds for the Central Universities 19CX05003A-10

Fundamental Research Funds for the Central Universities 18CX02046A

More Information
  • 摘要: 热传导规律的研究在激光诱导薄膜材料改性等应用中有着重要的作用,本文针对二氧化碳激光器辐照下的二氧化钛(TiO2)薄膜表面的热效应进行了理论仿真和实验研究。首先,对具有粗糙上表面的TiO2薄膜,利用有限元法构建了连续激光作用下的TiO2薄膜的立体模型并得到了其三维温度场分布。然后使用CO2激光器进行辐照实验,分析了辐照时间和功率等参数对TiO2薄膜形貌、晶相以及颜色的影响。仿真表明,连续激光辐照下TiO2薄膜的瞬态温度场呈高斯分布,且与激光功率、光斑半径、辐照时间等因素有关。当表面温度小于分解温度时,薄膜上表面最大平均温度与激光功率满足线性关系,与光斑半径满足ExpAssoc非线性关系。实验结果表明,激光辐照引起TiO2薄膜材料表面粗糙度降低且颜色变化。激光功率过小或辐照时间过短会导致有效作用面积小且不均匀,反之会产生热形变。结合仿真和实验可知使用功率为6 W,半径为3 mm的连续激光辐照TiO2薄膜10 s时取得的处理效果最优。

     

  • 图 1  MATLAB构建的随机粗糙面型

    Figure 1.  Random rough face constructed by MATLAB

    图 2  几何模型

    Figure 2.  Geometric model

    图 3  0.5、2.5、5、10 s时的上表面等温线及热量传导方向示意图

    Figure 3.  Schematic diagram of isotherm and heat conduction direction on the upper surface at 0.5, 2.5, 5 and 10 s

    图 4  不同激光功率下上表面平均温度-时间曲线

    Figure 4.  Average temperature-time curves of upper surface under different laser powers

    图 5  激光功率与上表面最大平均温度的线性拟合

    Figure 5.  Linear fitting of laser power and maximum mean temperature on the upper surface

    图 6  不同激光功率下上表面中心线上温度分布曲线

    Figure 6.  Temperature distribution curves of upper surface centerline under different laser powers

    图 7  不同激光光斑半径下上表面平均温度-时间曲线

    Figure 7.  Average temperature-time curves of upper surface under different laser radius

    图 8  激光功率与上表面最大平均温度的线性拟合

    Figure 8.  Linear fitting of laser power and maximum mean temperature on the upper surface

    图 9  不同光斑半径下上表面中心线温度分布曲线

    Figure 9.  Temperature distribution curves of upper surface centerline under different laser radius

    图 10  TiO2薄膜显微图

    Figure 10.  Micrograph of TiO2 film

    图 11  TiO2薄膜X射线衍射图谱

    Figure 11.  X-ray diffraction patterns of TiO2 film

    图 12  不同激光功率下的样品表面显微图

    Figure 12.  Micrographs of sample surface under different laser powers

    图 13  不同激光功率下样品的X射线衍射图谱

    Figure 13.  X-ray diffraction spectra of sample with different laser powers

    图 14  不同辐照时间下样品表面显微图

    Figure 14.  Micrographs of sample surface under different irradiation times

    图 15  不同激光辐照时间下样品的X射线衍射图谱

    Figure 15.  X-ray diffraction spectra of sample under different laser irradiation times

    表  1  特性参数

    Table  1.   Characteristic parameters

    Parameters Abbr. Unit Value
    Constant pressure heat capacity C J·Kg-1·K-1 710
    Thickness d mm 0.1
    Length l mm 3.35
    Laser radius a mm 3
    Thermal conductivity k W·m-1· K-1 8.4
    Absorption coefficient α m-1 1 800
    Scattering coefficient σs m-1 2.647
    Density ρ kg·m-3 3 313
    Thermal radiation rate ε 1 0.1
    Surface heat transfer coefficient h W·cm-1· K-1 156
    下载: 导出CSV

    表  2  高斯函数拟合公式及相关系数拟合参数

    Table  2.   Gauss functions and their fitting parameters

    Laser power/W Equation R2
    a 3 y=317.5087+34.03*exp{-2*[(x+1.9595e-4)/5.0947]2} 0.999 1
    b 6 y=341.8283+68.0073*exp{-2*[(x+1.9607e-4)/5.0956]2} 0.999 1
    c 9 y=366.8283+101.9044*exp{-2*[(x+1.9626e-4)/5.0969]2} 0.999 1
    d 12 y=390.3105+135.7004*exp{-2*[(x+1.9633e-4)/5.0986]2} 0.999 1
    e 15 y=414.45+169.3716*exp{-2*[(x+1.9626e-4)/5.1007]2} 0.999 1
    f 18 y=438.5033+202.8924*exp{-2[(x+1.9634e-4)/5.1032]2} 0.999 1
    下载: 导出CSV

    表  3  ExpAssoc函数及Allometricl函数形式及相应拟合参数

    Table  3.   ExpAssoc function, Allometricl function and their fitting parameters

    Function name Equation R2
    ExpAssoc y=188.785 5-1 525.934 4*[1-exp(-x/1.130 9)] 0.999 3
    Allometricl y=983.785 4*x^(-669 9) 0.997 3
    下载: 导出CSV

    表  4  拟合参数

    Table  4.   Fitting parameters

    Laser radius/mm Equation R2
    a 1 y=356.5106+45.9932*exp{-2*[(x-7.6126e-4)/5.5986]2} 0.999 1
    b 2 y=347.7367+630.6741*exp{-2*[(x+5.7232e-5)/2.8963]2} 0.999 2
    c 3 y=356.8013+249.8764*exp{-2*[(x+0.0013)/4.2904]2} 0.999 4
    d 4 y=366.0817+101.9233*exp{-2*[(x+2.1173e-4)/5.0977]2} 0.999 1
    下载: 导出CSV
  • [1] GARESO P L, SAMPE N, PALENTEK V, et al.. Influence of annealing on Fe-doped TiO2 powders using co-precipitation technique[J]. AIP Conference Proceedings, 2017, 1801(1):020002. http://cn.bing.com/academic/profile?id=0f67a5130299ac54c134a499e908cdb3&encoded=0&v=paper_preview&mkt=zh-cn
    [2] SPINELLI P, MACCO B, VERSCHUUREN M A, et al.. Al2O3/TiO2 nano-pattern antireflection coating with ultralow surface recombination[J]. Applied Physics Letters, 2013, 102(23):233902. doi: 10.1063/1.4810970
    [3] CHOU J C, YANG H Y, CHEN CH W. Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system[J]. Microelectronics Reliability, 2010, 50(5):753-756. doi: 10.1016/j.microrel.2010.01.025
    [4] MIRGHANI M, AL-MUBAIYEDH U A, NASSER M S, et al.. Experimental study and modeling of photocatalytic reduction of Pb2+ by WO3/TiO2 nanoparticles[J]. Separation and Purification Technology, 2015, 141:285-293. doi: 10.1016/j.seppur.2014.12.006
    [5] YAMAMOTO A, MIZUNO Y, TERAMURA K, et al.. Visible-light-assisted selective catalytic reduction of NO with NH3 on porphyrin derivative-modified TiO2 photocatalysts[J]. Catalysis Science & Technology, 2015, 5(1):556-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f03584ef1a2b187e89e7ba95fcfc58f9
    [6] HVHM S, ROSENFELD A, KRVGER J, et al.. Laser-induced periodic surface structures on zinc oxide crystals upon two-colour femtosecond double-pulse irradiation[J]. Physica Scripta, 2017, 92(3):034003. doi: 10.1088/1402-4896/aa5578
    [7] 袁志刚, 李亚国, 陈贤华, 等.光学元件改性处理对激光损伤阈值的影响[J].光学 精密工程, 2016, 24(12):2956-2961. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201612010

    YUAN ZH G, LI Y G, CHEN X H, et al.. Effect of chemical modification technology laser damage threshold of fused silica optical elements[J]. Opt. Precision Eng., 2016, 24(12):2956-2961.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201612010
    [8] TRTICA M S, GAKOVIC B M, RADAK B B, et al.. Material surface modification by ns, ps and fs laser pulses[J]. Opt. Precision Eng., 2011, 19(2):221-227. doi: 10.3788/OPE.
    [9] 周海娇, 孙文军, 刘中洋.脉冲激光辐照GaAs材料热效应研究[J].光子学报, 2014, 43(11):21-25. http://d.old.wanfangdata.com.cn/Periodical/gzxb201411005

    ZHOU H J, SUN W J, LIU ZH Y, et al.. Research of nonlinear absorption effect of pulse laser irradiation for GaAs[J]. Acta Optica Sinica, 2014, 43(11):21-25.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201411005
    [10] 王伟树.毫秒激光辐照半导体材料的热力效应数值模拟[D].长春: 长春理工大学, 2014. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2529054

    WANG W SH. Numerical simulation of thermal-mechanical effects during millisecond laser irradiate semiconductor materials[D]. Changchun: Changchun University of Science and Technology, 2014.(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2529054
    [11] SAID-BACAR Z, LEROY Y, ANTONI F, et al.. Modeling of CW laser diode irradiation of amorphous silicon films[J]. Applied Surface Science, 2011, 257(12):5127-5131. doi: 10.1016/j.apsusc.2010.11.025
    [12] 张宏伟, 任妮, 薛红涛, 等.聚酰亚胺基底金属薄膜激光刻蚀温度场分布[J].中国激光, 2016, 43(5):94-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201605014

    ZHANG H W, REN N, XUE H T, et al.. Temperature distribution for laser etching of metal thin films on polyimide substrate[J]. Chinese Journal of Lasers, 2016, 43(5):94-101.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201605014
    [13] 周维军, 袁永华, 桂元珍, 等.脉冲激光辐照TiO2/SiO2薄膜热效应研究[J].强激光与粒子束, 2007, 19(1):23-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200701006

    ZHOU W J, YUAN Y H, GUI Y ZH, et al.. Thermal effect of TiO2/SiO2 film irradiated by pulse laser[J]. High Power Laser and Particle Beams, 2007, 19(1):23-26.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200701006
    [14] 宋宏伟, 黄晨光.激光辐照诱导的热与力学效应[J].力学进展, 2016, 46(1):201610. http://d.old.wanfangdata.com.cn/Periodical/lxjz201601010

    SONG H W, HUANG CH G. Progress in thermal-mechantical effects induced by laser[J]. Advances in Mechanics, 2016, 46(1):201610.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lxjz201601010
    [15] HOSSAIN M M, CHOWDHURY M H. Heat transfer simulations for pulsed laser annealing of silicon thin film[C]. Proceedings of IEEE 56th International Midwest Symposium on Circuits and Systems, IEEE, 2013: 732-735. https://www.researchgate.net/publication/261308482_Heat_transfer_simulations_for_pulsed_laser_annealing_of_silicon_thin_film
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  2035
  • HTML全文浏览量:  729
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 修回日期:  2018-10-12
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!