留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点增强硅基探测成像器件的研究进展

朱晓秀 葛咏 李建军 赵跃进 邹炳锁 钟海政

朱晓秀, 葛咏, 李建军, 赵跃进, 邹炳锁, 钟海政. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学(中英文), 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062
引用本文: 朱晓秀, 葛咏, 李建军, 赵跃进, 邹炳锁, 钟海政. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学(中英文), 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062
ZHU Xiao-xiu, GE Yong, LI Jian-jun, ZHAO Yue-jin, ZOU Bing-suo, ZHONG Hai-zheng. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062
Citation: ZHU Xiao-xiu, GE Yong, LI Jian-jun, ZHAO Yue-jin, ZOU Bing-suo, ZHONG Hai-zheng. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. doi: 10.3788/CO.20201301.0062

量子点增强硅基探测成像器件的研究进展

doi: 10.3788/CO.20201301.0062
基金项目: 

国家自然科学基金优秀青年基金项目 No. 61722502

中港合作基金 No.51761165021

详细信息
    作者简介:

    朱晓秀(1992-), 女, 山东聊城人, 硕士研究生, 2016年于中国地质大学(武汉)获得学士学位, 主要从事钙钛矿量子点光学膜及其光电集成应用研究。E-mail:2120161207@bit.edu.cn

    钟海政(1981—),男,河北清河人,博士,教授,博士生导师,2003年于吉林大学获得学士学位,2008年于中国科学院化学研究所获得博士学位,主要从事光学与光电子材料研究,在钙钛矿、铜铟硫等量子点材料及其应用方面有突出贡献。 E-mail:hzzhong@bit.edu.cn

  • 中图分类号: TB34;TH741

Research progress of quantum dot enhanced silicon-based photodetectors

Funds: 

Supported by National Natural Science Foundation of China Excellent Youth Fund No. 61722502

National Science Foundation of China/Research Grant Council of Hong Kong Project No.51761165021

More Information
  • 摘要: 硅基探测成像器件具有可靠性高、易集成和成本低等优点,是目前应用最广泛的探测成像器件。随着人工智能和无人驾驶等技术的日益发展,对探测成像器件提出了更高的要求,而硅基探测成像器件性能的提升成为重要的研究方向。量子点具有吸收系数大、光谱可调、发光效率高和易集成等优点,是一类优异的光谱转换和光调制材料。利用量子点材料可调制的光学特性,可以对硅基探测成像器件的功能进行拓展,从而实现紫外响应增强、红外响应拓展、紫外偏振探测和多光谱成像等功能。经过多年的研究,这一领域已经取得了一定的进展,部分技术展现出较好的应用前景。本文介绍了量子点增强硅基探测器在紫外探测、红外成像、偏振探测和多光谱成像方面的研究进展,希望能够引起国内学术界和工业界的关注和重视。

     

  • 图 1  不同探测器结构示意图

    Figure 1.  Schematic diagram of different photodetectors

    图 2  3种量子点透射电镜照片及其吸收/荧光光谱图。(a)和(b) CdSe量子点[15];(c)和(d) CdSe@CdS点棒[31];(e)和(f) CH3NH3PbX3量子点及其在自然光和紫外光下的照片[23]

    Figure 2.  Transmission electron microscopy images and absorption/fluorescence spectra of three kinds of quantum dots. (a), (b) CdSe quantum dots[15]; (c), (d) CdSe@CdS core/shell rods[31]; (e), (f) CH3NH3PbX3 quantum dots and photograph under natural and ultraviolet light[23]

    图 3  量子点增强硅基探测器应用

    Figure 3.  Applications of quantum-dot-enhanced photodetector

    图 4  CH3NH3PbBr3量子点增强EMCCD[27]

    Figure 4.  CH3NH3PbBr3 quantum-dot-enhanced EMCCD[27]

    图 5  量子点增强红外探测成像应用实例[51]

    Figure 5.  Applications of quantum-dot-enhanced IR photodetector[51]

    图 6  点棒结构纳米棒增强偏振探测成像应用实例[57]

    Figure 6.  Application of dot-in-rods-enhanced polarization photodetector[57]

    图 7  量子点在光谱滤光中的应用实例[70]。(a)量子点滤光膜阵列、透过光谱及其集成实物图;(b)和(c)量子点光谱仪的光谱重建和分辨率测试结果

    Figure 7.  Application of quantum-dot-enhanced spectral photodetector[70]. (a) Quantum dot filter array, transmission spectra and integration prototype; (b), (c)reconstruction and resolution test results

    表  1  CCD与CMOS成像器件关键参数对比

    Table  1.   Comparison of key parameters for CCD and CMOS

    关键参数 CCD CMOS
    像素信号 电荷包 电压
    芯片信号 模拟电压 比特(数字)
    灵敏度 较高
    动态范围 中至高
    一致性 稍微较低
    成本 较高 较低
    下载: 导出CSV
  • [1] 王俊.超级像素CMOS图像传感器技术研究[D].上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    WANG J. Research on superpixel CMOS image sensor technology[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics) 2014. (in Chinese)
    [2] MURAMATSU M, AKAHORI H, SHIBAYAMA K, et al.Greater-than-90% QE in visible spectrum perceptible from UV to near-IR Hamamatsu thinned back-illuminated CCDs[J]. Proceedings of SPIE, 1997, 3019: 2-8. doi: 10.1117/12.275165
    [3] ALIVISATOS A P. Semiconductor clusters, Nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937. doi: 10.1126/science.271.5251.933
    [4] CARUGE J M, HALPERT J E, WOOD V, et al.Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nature Photonics, 2008, 2(4): 247-250. doi: 10.1038/nphoton.2008.34
    [5] TAN ZH K, MOGHADDAM R S, LAI M L, et al.Bright light-emitting diodes based on organometal halide perovskite[J]. Nature Nanotechnology, 2014, 9(9): 687-692. doi: 10.1038/nnano.2014.149
    [6] KONSTANTATOS G, HOWARD I, FISCHER A, et al.Ultrasensitive solution-cast quantum dot photodetectors[J]. Nature, 2006, 442(7099): 180-183. doi: 10.1038/nature04855
    [7] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al.Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446. doi: 10.1038/nmat1390
    [8] SAHU S, BEHERA B, MAITI T K, et al.Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70): 8835-8837. doi: 10.1039/c2cc33796g
    [9] SHEN J H, ZHU Y H, YANG X L, et al.Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chemical Communications, 2012, 48(31): 3686-3699. doi: 10.1039/c2cc00110a
    [10] LI H T, HE X D, KANG ZH H, et al.Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26): 4430-4434. doi: 10.1002/anie.200906154
    [11] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. Journal of the American Chemical Society, 1993, 115(19): 8706-8715. doi: 10.1021/ja00072a025
    [12] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J]. Journal of the American Chemical Society, 2001, 123(1): 183-184. doi: 10.1021/ja003633m
    [13] QU L H, PENG Z A, PENG X G. Alternative routes toward high quality CdSe nanocrystals[J]. Nano Letters, 2001, 1(6): 333-337. doi: 10.1021/nl0155532
    [14] YU W W, PENG X G. Formation of high-quality CdS and other Ⅱ-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers[J]. Angewandte Chemie International Edition, 2002, 41(13): 2368-2371. doi: 10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
    [15] YU W W, QU L H, GUO W ZH, et al.Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chemistry of Materials, 2003, 15(14): 2854-2860. doi: 10.1021/cm034081k
    [16] BATTAGLIA D, PENG X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent[J]. Nano Letters, 2002, 2(9): 1027-1030. doi: 10.1021/nl025687v
    [17] CROS-GAGNEUX A, DELPECH F, NAYRAL C, et al.Surface chemistry of InP quantum dots: a comprehensive study[J]. Journal of the American Chemical Society, 2010, 132(51): 18147-18157. doi: 10.1021/ja104673y
    [18] HARRIS D K, BAWENDI M G. Improved precursor chemistry for the synthesis of Ⅲ-Ⅴ quantum dots[J]. Journal of the American Chemical Society, 2012, 134(50): 20211-20213. doi: 10.1021/ja309863n
    [19] HINES M A, SCHOLES G D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution[J]. Advanced Materials, 2003, 15(21): 1844-1849. doi: 10.1002/adma.200305395
    [20] MCDONALD S A, KONSTANTATOS G, ZHANG SH G, et al.Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Materials, 2005, 4(2): 138-142. doi: 10.1038/nmat1299
    [21] MOREELS I, LAMBERT K, SMEETS D, et al.Size-dependent optical properties of colloidal PbS quantum dots[J]. ACS Nano, 2009, 3(10): 3023-3030. doi: 10.1021/nn900863a
    [22] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano letters, 2015, 15(6): 3692-3696. doi: 10.1021/nl5048779
    [23] ZHANG F, ZHONG H ZH, CHEN CH, et al.Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology[J]. ACS Nano, 2015, 9(4): 4533-4542. doi: 10.1021/acsnano.5b01154
    [24] SONG J ZH, LI J H, LI X M, et al.Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567
    [25] ZHOU Q CH, BAI Z L, LU W G, et al.In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J]. Advanced Materials, 2016, 28(41): 9163-9168. doi: 10.1002/adma.201602651
    [26] CHEN N J, BAI Z L, WANG Z M, et al.P-119: low cost perovskite quantum dots film based wide color gamut backlight unit for LCD TVs[J]. SID Symposium Digest of Technical Papers, 2018, 49(1): 1657-1659. doi: 10.1002/sdtp.12303
    [27] ZHANG M J, WANG L X, MENG L H, et al.Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection[J]. Advanced Optical Materials, 2018, 6(16): 1800077. doi: 10.1002/adom.201800077
    [28] TAN Q W, WU X G, ZHANG M J, et al.Performance analysis of PQDCF-coated silicon image sensor using Monte-Carlo ray-trace simulation[J]. Optics Express, 2019, 27(6): 9079-9087. doi: 10.1364/OE.27.009079
    [29] LU W G, WU X G, HUANG S, et al.Strong polarized photoluminescence from stretched perovskite-nanocrystal-embedded polymer composite films[J]. Advanced Optical Materials, 2017, 5(23): 1700594. doi: 10.1002/adom.201700594
    [30] WANG L, MENG L H, CHEN L, et al.Ultralow-threshold and color-tunable continuous-wave lasing at room-temperature from in-situ fabricated perovskite quantum dots[J]. The Journal of Physical Chemistry Letters, 2019, 10(12): 3248-3253. doi: 10.1021/acs.jpclett.9b00658
    [31] CARBONE L, NOBILE C, DE GIORGI M, et al.Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach[J]. Nano Letters, 2007, 7(10): 2942-2950. doi: 10.1021/nl0717661
    [32] NIRMAL M, NORRIS D J, KUNO M, et al.Observation of the "dark exciton" in CdSe quantum dots[J]. Physical Review Letters, 1995, 75(20): 3728-3731. doi: 10.1103/PhysRevLett.75.3728
    [33] MENDE S B, HEETDERKS H, FREY H U, et al.Far ultraviolet imaging from the IMAGE spacecraft. 1. System design[J]. Space Science Reviews, 2000, 91(1-2): 243-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01d4edca421803481713b5fa5c7682a5
    [34] 周峰, 郑国宪, 闫锋, 等.天基紫外预警技术发展现状及思考[J].航天返回与遥感, 2012, 33(6): 39-44. http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007

    ZHOU F, ZHENG G X, YAN F, et al.Development status and thoughts of space-based UV warning technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(6): 39-44. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/htfhyyg201206007
    [35] ØSTERGAARD J. UV imaging in pharmaceutical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 140-148. doi: 10.1016/j.jpba.2017.07.055
    [36] NIKZAD S, HOENK M E, GREER F, et al.Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications[J]. Applied Optics, 2012, 51(3): 365-369. doi: 10.1364/AO.51.000365
    [37] HAMDEN E T, GREER F, HOENK M E, et al.Ultraviolet antireflection coatings for use in silicon detector design[J]. Applied Optics, 2011, 50(21): 4180-4188. doi: 10.1364/AO.50.004180
    [38] KARCHER A, BEBEK C J, KOLBE W F, et al.Measurement of lateral charge diffusion in thick, fully depleted, back-illuminated CCDs[C]. Proceedings of 2003 IEEE Nuclear Science Symposium, IEEE, 2003: 1513-1517.
    [39] KNOWLES A, WILLIAMS S, NINKOV Z, et al.Incorporating quantum dots in a magnesium fluoride matrix to enable deep-UV sensitivity for standard silicon based imaging detectors[J]. Proceedings of SPIE, 2019, 10982: 1098234. http://cn.bing.com/academic/profile?id=bc33ff969cdb1b9016104c66ddf6f734&encoded=0&v=paper_preview&mkt=zh-cn
    [40] SHENG X, YU C J, MALYARCHUK V, et al.Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores[J]. Advanced Optical Materials, 2014, 2(4): 314-319. doi: 10.1002/adom.201300475
    [41] MORRISSEY P F, MCCANDLISS S R, FELDMAN P D, et al.Ultraviolet performance of a lumigen-coated CCD[J]. Bulletin of the American Astronomical Society, 1991, 23: 1316. https://www.researchgate.net/publication/234265441_Ultraviolet_Performance_of_a_Lumigen-Coated_CCD
    [42] DESLANDES A, WEDDING A B, CLARKE S R, et al.Characterization of PVD lumogen films for wavelength conversion applications[J]. Proceedings of SPIE, 2005, 5649: 616-626. doi: 10.1117/12.582244
    [43] 刘猛, 张大伟, 谢品, 等.增强光电图像传感器紫外探测薄膜的制备[J].仪表技术与传感器, 2009(9): 12-14. doi: 10.3969/j.issn.1002-1841.2009.09.005

    LIU M, ZHANG D W, XIE P, et al.Investigation in UV-enhanced coatings based on Zn2SiO4: Mn for image sensors[J]. Instrument Technique and Sensor, 2009(9): 12-14. (in Chinese) doi: 10.3969/j.issn.1002-1841.2009.09.005
    [44] FRANKS W A R, KⅡK M J, NATHAN A. UV-responsive CCD image sensors with enhanced inorganic phosphor coatings[J]. IEEE Transactions on Electron Devices, 2003, 50(2): 352-358. doi: 10.1109/TED.2003.809029
    [45] ROBINSON R, NINKOV Z, CORMIER D, et al.First report on quantum dot coated CMOS CID arrays for the UV and VUV[J]. Proceedings of SPIE, 2013, 8859: 88590K. http://cn.bing.com/academic/profile?id=df065f252d024c43fcffe75b34b887eb&encoded=0&v=paper_preview&mkt=zh-cn
    [46] JIANG L, SUN H J, XU B L, et al.The spectrum of quantum dots film for UV CCD[J]. Journal of Spectroscopy, 2013: 803907. http://cn.bing.com/academic/profile?id=1e7ad462dfa0c375a1df68bc87ec6a75&encoded=0&v=paper_preview&mkt=zh-cn
    [47] ROGALSKI A. Infrared detectors: an overview[J]. Infrared Physics & Technology, 2002, 43(3-5): 187-210. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb200706003
    [48] ROGALSKI A. Recent progress in infrared detector technologies[J]. Infrared Physics & Technology, 2011, 54(3): 136-154. http://cn.bing.com/academic/profile?id=8b1cbabae30cb958a23c23df14e983b7&encoded=0&v=paper_preview&mkt=zh-cn
    [49] MANDELLI E, BEILEY Z M, KOLLI N, et al.Quantum dot-based image sensors for cutting-edge commercial multispectral cameras[J]. Proceedings of SPIE, 2016, 9933: 993304. http://cn.bing.com/academic/profile?id=45db81d2318e996a9b12847605162135&encoded=0&v=paper_preview&mkt=zh-cn
    [50] BEILEY Z M, CHEUNG R, HANELT E F, et al.Device design for global shutter operation in a 1.1-μm pixel image sensor and its application to near infrared sensing[J]. Proceedings of SPIE, 2017, 10098: 100981L. doi: 10.1117/12.2253219
    [51] BEILEY Z M, PATTANTYUS-ABRAHAM A, HANELT E, et al.Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency[J]. Proceedings of SPIE, 2017, 10100: 101001B. http://cn.bing.com/academic/profile?id=c834a9ff49bf2a28052be83566520b04&encoded=0&v=paper_preview&mkt=zh-cn
    [52] KIM H Y, YOON D E, JANG J, et al.Quantum dot/siloxane composite film exceptionally stable against oxidation under heat and moisture[J]. Journal of the American Chemical Society, 2016, 138(50): 16478-16485. doi: 10.1021/jacs.6b10681
    [53] SUÁREZ I, GORDILLO H, ABARGUES R, et al.Photoluminescence waveguiding in CdSe and CdTe QDs-PMMA nanocomposite films[J]. Nanotechnology, 2011, 22(43): 435202. doi: 10.1088/0957-4484/22/43/435202
    [54] TYO J S, GOLDSTEIN D L, CHENAULT D B, et al.Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469. doi: 10.1364/AO.45.005453
    [55] VERMA V B, MARSILI F, HARRINGTON S, et al.A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector[J]. Applied Physics Letters, 2012, 101(25): 251114. doi: 10.1063/1.4768788
    [56] CREMER F, DE JONG W, SCHUTTE K. Infrared polarization measurements and modelling applied to surface laid anti-personnel landmines[J]. Optical Engineering, 2002, 41(5): 1021-1032. doi: 10.1117/1.1467362
    [57] GE Y, ZHANG M J, WANG L, et al.Polarization-sensitive ultraviolet detection from oriented-CdSe@CdS-dot-in-rods-integrated silicon photodetector[J]. Advanced Optical Materials, 2019, 7(18): 1900330. doi: 10.1002/adom.201900330
    [58] CHAGANTI K, SALAKHUTDINOV I, AVRUTSKY I, et al.A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens[J]. Optics Express, 2006, 14(9): 4064-4072. doi: 10.1364/OE.14.004064
    [59] JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al.Organic photodiodes: the future of full color detection and image sensing[J]. Advanced Materials, 2016, 28(24): 4766-4802. doi: 10.1002/adma.201505405
    [60] WOLFFENBUTTEL R F. State-of-the-art in integrated optical microspectrometers[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(1): 197-202. doi: 10.1109/TIM.2003.821490
    [61] MCGONIGLE A J S, WILKES T C, PERING T D, et al.Smartphone spectrometers[J]. Sensors, 2018, 18(1): 223. doi: 10.1109/JSEN.2017.2765745
    [62] BACON C P, MATTLEY Y, DEFRECE R. Miniature spectroscopic instrumentation: applications to biology and chemistry[J]. Review of Scientific Instruments, 2004, 75(1): 1-16. doi: 10.1063/1.1633025
    [63] CHIN C D, LINDER V, SIA S K. Lab-on-a-chip devices for global health: past studies and future opportunities[J]. Lab on a Chip, 2007, 7(1): 41-57. doi: 10.1039/B611455E
    [64] KONG S H, WIJNGAARDS D D L, WOLFFENBUTTEL R F. Infrared micro-spectrometer based on a diffraction grating[J]. Sensors and Actuators A: Physical, 2001, 92(1-3): 88-95. doi: 10.1016/S0924-4247(01)00544-1
    [65] GOLDMAN D S, WHITE P L, ANHEIER N C. Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis[J]. Applied Optics, 1990, 29(31): 4583-4589. doi: 10.1364/AO.29.004583
    [66] BRYAN K M, JIA ZH, PERVEZ N K, et al.Inexpensive photonic crystal spectrometer for colorimetric sensing applications[J]. Optics Express, 2013, 21(4): 4411-4423. doi: 10.1364/OE.21.004411
    [67] WANG SH W, XIA CH SH, CHEN X SH, et al.Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 2007, 32(6): 632-634. doi: 10.1364/OL.32.000632
    [68] DUEMPELMANN L, GALLINET B, NOVOTNY L. Multispectral imaging with tunable plasmonic filters[J]. ACS Photonics, 2017, 4(2): 236-241. doi: 10.1021/acsphotonics.6b01003
    [69] KUMAR K, DUAN H G, HEGDE R S, et al.Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi: 10.1038/nnano.2012.128
    [70] BAO J, BAWENDI M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70. doi: 10.1038/nature14576
    [71] KHAN S A, BOWDEN A K E. Colloidal quantum dots for cost-effective, miniaturized, and simple spectrometers[J]. Clinical Chemistry, 2016, 62(4): 548-550. doi: 10.1373/clinchem.2015.247999
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  3214
  • HTML全文浏览量:  1650
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-13
  • 修回日期:  2019-07-03
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!