留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超分辨望远光学系统像差影响及优化设计

邵洪禹 李英超 王超 史浩东 刘壮 李冠霖

邵洪禹, 李英超, 王超, 史浩东, 刘壮, 李冠霖. 超分辨望远光学系统像差影响及优化设计[J]. 中国光学(中英文), 2020, 13(1): 106-120. doi: 10.3788/CO.20201301.0106
引用本文: 邵洪禹, 李英超, 王超, 史浩东, 刘壮, 李冠霖. 超分辨望远光学系统像差影响及优化设计[J]. 中国光学(中英文), 2020, 13(1): 106-120. doi: 10.3788/CO.20201301.0106
SHAO Hong-yu, LI Ying-chao, WANG Chao, SHI Hao-dong, LIU Zhuang, LI Guan-lin. Aberration effect and optimization design of super-resolution telescope optical system[J]. Chinese Optics, 2020, 13(1): 106-120. doi: 10.3788/CO.20201301.0106
Citation: SHAO Hong-yu, LI Ying-chao, WANG Chao, SHI Hao-dong, LIU Zhuang, LI Guan-lin. Aberration effect and optimization design of super-resolution telescope optical system[J]. Chinese Optics, 2020, 13(1): 106-120. doi: 10.3788/CO.20201301.0106

超分辨望远光学系统像差影响及优化设计

doi: 10.3788/CO.20201301.0106
基金项目: 

国家重点研发计划 2017YFC0803806

国家自然科学基金青年科学基金 61805028

国家自然科学基金青年科学基金 61805027

国家自然基金天文联合基金项目 U1731240

国家国防科工局专项 KJSP2016010202

详细信息
    作者简介:

    邵洪禹(1994-)男, 吉林长春人, 硕士研究生, 2017年于长春理工大学获得学士学位, 主要从事光学设计, 偏振成像等方面的研究。E-mail:1531983483@qq.com

    李英超(1966-)男, 吉林长春人, 工学博士, 教授, 博士生导师, 研究员, 中国宇航协会光电技术专委会常务委员, 主要从事多维度光学特性测试与探测技术, 先进光学成像测试技术。E-mail:hsjlyc@126.com

  • 中图分类号: O435.2;TH743

Aberration effect and optimization design of super-resolution telescope optical system

Funds: 

National Key R & D Program of China 2017YFC0803806

National Natural Science Foundation of China Youth Science Foundation 61805028

National Natural Science Foundation of China Youth Science Foundation 61805027

National Natural Fund Astronomical Joint Fund Project U1731240

Special Projects of Science and Technology Business KJSP2016010202

More Information
  • 摘要: 针对大口径光学系统中像差影响超分辨效果的问题,开展泽尼克波前像差对望远超分辨成像系统性能和超分辨局部视场影响的研究。设计四区型位相光瞳滤波器,在理想光学系统出瞳处分别加入离焦、像散、彗差和球差像差,逐渐增加幅值,通过分析不同类别和幅度的波前像差下焦面光强分布变化,研究超分辨成像性能和局部视场对不同种类像差的容忍程度。结果表明,离焦可以抑制超分辨旁瓣能量,提高超分辨倍率,但对局部视场影响较大;球差可以抑制超分辨旁瓣能量,增大局部视场;像散和彗差使光斑圆对称性明显下降,其中像散对局部视场的影响较为明显;同时加入适量离焦和球差时,超分辨旁瓣能量下降,超分辨倍率提高,且不影响系统局部视场。据此设计了一个F数为10,焦距为12 m的大口径光学系统,通过合理优化球差和离焦剩余量,实现了超分辨倍率由1.21倍到1.31倍的提升,最大旁瓣峰值由0.33下降到0.30,局部视场为38.28 μm。

     

  • 图 1  超分辨位相板工作原理图

    Figure 1.  Working principle diagram of super-resolution phase plate

    图 2  滤波器结构示意图

    Figure 2.  Schematic diagram of filter structure

    图 3  超分辨局部视场示意图

    Figure 3.  Schematic diagram of super-resolution local field of view

    图 4  位相板仿真图

    Figure 4.  Simulation diagram of phase plate

    图 5  大口径理想光学系统

    Figure 5.  Ideal optical system with large aperture

    图 6  未加入位相板的PSF仿真图

    Figure 6.  PSF simulation diagram without phase plate

    图 7  加入位相板的PSF仿真图

    Figure 7.  PSF simulation diagram with phase plate

    图 8  0.08λ离焦像差时PSF仿真图

    Figure 8.  PSF simulation diagram for 0.08λ defocus aberration

    图 9  xy方向光斑主瓣直径随离焦像差的变化情况

    Figure 9.  Main lobe diameter of spots in x and y directions varies with defocusing aberration

    图 10  xy方向局部视场随离焦像差的变化情况

    Figure 10.  Local field of view in x and y directions varies with defocusing aberration

    图 11  未加像差的PSF仿真图

    Figure 11.  PSF simulation diagram without aberration

    图 12  0.05λ离焦像差的PSF仿真图

    Figure 12.  PSF simulation diagram for 0.05λ defocus aberration

    图 13  0.07λ像散时PSF仿真图

    Figure 13.  PSF simulation diagram for 0.07λ astigmatism aberration

    图 14  xy方向光斑主瓣直径随像散的变化情况

    Figure 14.  Main lobe diameter of spots in x and y directions varies with astigmatism aberration

    图 15  xy方向局部视场随像散变化

    Figure 15.  Local field of view in x and y directions varies with astigmatism

    图 16  0.1λ彗差时PSF图

    Figure 16.  PSF simulation diagram for 0.1λ coma aberration

    图 17  x方向光斑主瓣直径随彗差的变化情况

    Figure 17.  The main lobe diameter of spots in x direction varies with coma aberration

    图 18  y方向光斑主瓣直径随彗差的变化情况

    Figure 18.  The main lobe diameter of spots in y direction varies with coma aberration

    图 19  x方向局部视场随彗差的变化情况

    Figure 19.  Local field of view in x direction varies with coma aberration

    图 20  y方向局部视场随彗差的变化情况

    Figure 20.  Local field of view in y direction varies with coma aberration

    图 21  0.15λ球差时的PSF图

    Figure 21.  PSF simulation diagram for 0.15 λ spherical aberration

    图 22  xy方向光斑主瓣直径随球差的变化情况

    Figure 22.  Main lobe diameter of spots in x and y directions varies with spherical aberration

    图 23  xy方向局部视场随球差的变化情况

    Figure 23.  Local field of view in x and y directions varies with spherical aberration

    图 24  加入0.02λ球差时的PSF仿真图

    Figure 24.  PSF simulation diagram with 0.02λ spherical aberration

    图 25  同时加入离焦和球差时PSF仿真图

    Figure 25.  PSF simulation with defocus and spherical aberration

    图 26  地基大口径光学系统

    Figure 26.  Ground-based large aperture optical system

    图 27  1:1中继成像光学系统

    Figure 27.  1:1 relay imaging optical system

    图 28  MTF图

    Figure 28.  MTF diagram

    图 29  点列图

    Figure 29.  Spot diagram

    图 30  场曲和畸变图

    Figure 30.  Field curvature and distortion diagram

    图 31  有像差,加入超分辨位相板PSF仿真图

    Figure 31.  PSF simulation diagram with phase plate and aberration

    图 32  无像差,未加入位相板的PSF仿真图

    Figure 32.  PSF simulation diagram without phase plate and aberration

    图 33  无像差,加入位相板的PSF仿真图

    Figure 33.  PSF simulation diagram with phase plate and without aberration

    表  1  滤波器参数

    Table  1.   Filter parameters

    Filter parameters r1 r2 r3 phase1 phase2 phase3 phase4 S G L/μm
    Value 0.231 0.56 0.769 0 3.141 5 0 3.141 5 0.114 1 1.285 7 38
    下载: 导出CSV

    表  2  光学系统加工公差范围

    Table  2.   Processing tolerance range of optical system

    Type Value
    Fringes(fringe) 1
    Surface irregularty(fringe) 0.1
    Thickness(mm) 0.01
    Surface tilts(arc min) 0.5
    Index 0.0005
    Abbe 0.1
    下载: 导出CSV

    表  3  光学系统装调公差范围

    Table  3.   Assembling tolerance range of optical system

    Type Value
    Thickness(mm) 0.01
    Element decenters(mm) 0.005
    Element tilts(arc min) 0.5
    下载: 导出CSV

    表  4  蒙特卡罗采样计算结果

    Table  4.   Monte Carlo sampling calculations

    Cumulative probability Wavefront(λ)
    98% 0.103634697
    90% 0.094200097
    50% 0.07729033
    10% 0.06107939
    2% 0.05353193
    下载: 导出CSV
  • [1] 张景旭.国外地基光电系统空间目标探测的进展[J].中国光学与应用光学, 2009, 2(1):10-16. doi: 10.3969/j.issn.2095-1531.2009.01.002

    ZHANG J X. Progress in foreign ground-based optoelectronic detecting system for space target detection[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(1):10-16. (in Chinese) doi: 10.3969/j.issn.2095-1531.2009.01.002
    [2] 王国强, 陈涛, 王建立.地基空间目标探测与识别技术[J].长春理工大学学报(自然科学版), 2009, 32(2):197-199. doi: 10.3969/j.issn.1672-9870.2009.02.006

    WANG G Q, CHEN T, WANG J L. The technology of detect and recognize space target using ground-based opt-electronic system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2009, 32(2):197-199. (in Chinese) doi: 10.3969/j.issn.1672-9870.2009.02.006
    [3] 田明丽, 薛喜昌.三区位相型三维超分辨光瞳滤波器的优化设计[J].光学技术, 2009, 35(4):591-593. doi: 10.3321/j.issn:1002-1582.2009.04.015

    TIAN M L, XUE X CH. Optimizing design of 3-zone phase-type 3D superresolution pupil filter[J]. Optical Technique, 2009, 35(4):591-593. (in Chinese) doi: 10.3321/j.issn:1002-1582.2009.04.015
    [4] DE JUANA D M, OTI J E, CANALES V F, et al.. Design of Super-resolving continuous phase filters[J]. Optics Letters, 2003, 28(8):607-609. doi: 10.1364/OL.28.000607
    [5] CANALES V F, DE JUANA D M, CAGIGAL M P. Super-resolution in compensated telescopes[J]. Optics Letters, 2004, 29(9):935-937. doi: 10.1364/OL.29.000935
    [6] OCHOA A N, PÉREZ-SANTOS C. Super-resolution with complex masks using a phase-only LCD[J]. Optics Letters, 2013, 38(24):5389-5392. doi: 10.1364/OL.38.005389
    [7] 王超, 张雅琳, 姜会林, 等.超分辨成像方法研究现状与进展[J].激光与红外, 2017, 47(7):789-791. http://d.old.wanfangdata.com.cn/Periodical/jgyhw201707001

    WANG CH, ZHANG Y L, JIANG H L, et al.. Research status and progress of super resolution imaging methods[J]. Laser & Infrared, 2017, 47(7):789-791. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jgyhw201707001
    [8] 汤东亮.基于超振荡光场的远场超分辨成像原理和方法研究[D].北京: 中国科学院光电技术研究所, 2016. http://d.old.wanfangdata.com.cn/Thesis/Y3055746

    TANG D L. Investigation of far-field super-resolution imaging method based on super-oscillatory phenomenon[D]. Beijing: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016. (in Chinese) http://d.old.wanfangdata.com.cn/Thesis/Y3055746
    [9] 赵丽娜, 戴云, 赵军磊, 等.基于变形反射镜的光瞳滤波超分辨成像[J].激光与光电子学进展, 2017, 54(4):041801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201704034

    ZHAO L N, DAI Y, ZHAO J L, et al.. Super-resolution imaging of pupil filter using deformable mirror[J]. Laser & Optoelectronics Progress, 2017, 54(4):041801. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201704034
    [10] 刘显著, 王超, 江伦, 等.二维多项式位相光瞳滤波实现超分辨望远成像[J].红外与激光工程, 2018, 47(4):0418007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201804032

    LIU X ZH, WANG CH, JIANG L, et al.. Super-resolution in telescope imaging system by two-dimensional polynomial phase pupil filter[J]. Infrared and Laser Engineering, 2018, 47(4):0418007. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201804032
    [11] BORN M, WOLF E. Principle of Optics[M]. London:Pergamon Press, 1975.
    [12] MCCUTCHEN C W. Generalized aperture and the three-dimensional diffraction image[J]. Journal of the Optical Society of America, 1964, 54(2):240-242. doi: 10.1364/JOSA.54.000240
    [13] 查为懿.超分辨光学系统成像原理与技术[D].北京: 北京理工大学, 2015.

    ZHA W Y. Imaging principles and technologies of the super-resolving optical system[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
    [14] 陶李, 王珏, 邹永宁, 等.改进的Zernike矩工业CT图像边缘检测[J].中国光学, 2012, 5(1):48-56. doi: 10.3969/j.issn.2095-1531.2012.01.007

    TAO L, WANG J, ZOU Y N, et al.. Improved Zernike moment method for industrial CT image edge detection[J]. Chinese Optics, 2012, 5(1):48-56. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.01.007
    [15] 单宝忠, 王淑岩, 牛憨笨, 等. Zernike多项式拟合方法及应用[J].光学 精密工程, 2002, 10(3):318-323. doi: 10.3321/j.issn:1004-924X.2002.03.020

    SHAN B ZH, WANG SH Y, NIU H B, et al.. Zernike polynomial fitting method and its application[J]. Opt. Precision Eng., 2002, 10(3):318-323. (in Chinese) doi: 10.3321/j.issn:1004-924X.2002.03.020
    [16] 杨佳文, 黄巧林, 韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J].航天返回与遥感, 2010, 31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009

    YANG J W, HUANG Q L, HAN Y M. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecraft Recovery & Remote Sensing, 2010, 31(5):49-55. (in Chinese) doi: 10.3969/j.issn.1009-8518.2010.05.009
    [17] 刘江, 苗二龙, 王学亮, 等.利用泽尼克位相型光瞳滤波器实现景深延拓及超分辨[J].光学学报, 2015, 35(12):1211002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512019

    LIU J, MIAO E L, WANG X L, et al.. Depth of field extending and super-resolving with phase pupil filter of Zernike polynomials[J]. Acta Optica Sinica, 2015, 35(12):1211002. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512019
    [18] 赵泽宇, 张肇宁, 黄振立.超分辨定位成像中的像差表征和校正[J].光学学报, 2017, 37(3):0318004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201703004

    ZHAO Z Y, ZHANG ZH N, HUANG ZH L. Aberration characterization and correction in super-resolution localization microscopy[J]. Acta Optica Sinica, 2017, 37(3):0318004. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201703004
  • 加载中
图(33) / 表(4)
计量
  • 文章访问数:  1761
  • HTML全文浏览量:  679
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-04-30
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!