Turn off MathJax
Article Contents
XUE Yi meng, LIU Bing cai, PAN Yong qiang, FANG Xin meng, TIAN Ai ling, ZHANG Rui xuan. Vortex phase-shifting digital holography for micro-optical element surface topography[J]. Chinese Optics. doi: 10.37188/CO.2023-0180
Citation: XUE Yi meng, LIU Bing cai, PAN Yong qiang, FANG Xin meng, TIAN Ai ling, ZHANG Rui xuan. Vortex phase-shifting digital holography for micro-optical element surface topography[J]. Chinese Optics. doi: 10.37188/CO.2023-0180

Vortex phase-shifting digital holography for micro-optical element surface topography

doi: 10.37188/CO.2023-0180
Funds:  Supported by Shaanxi Provincial Science and Technology Department Project (No. 2023KXJ-066); Shaanxi Province Education Department Project (No. 23JY034)
More Information
  • Non-destructive, non-contact phase-shifting digital holography has distinct advantages in identifying micro-optical components. Because traditional phase-shifting digital holography requires fine control and cumbersome calibration of the phase shifter, its optical path is susceptible to mechanical vibration interference, which reduces the quality of the holographically reproduced image. This paper proposes a vortex phase-shifting digital holography for the micro-optical element surface measurement method with the help of the special phase distribution of vortex light. The method utilizes a helical phase plate to modulate the vortex phase and introduce a high-precision phase shift. Based on the constructed vortex phase-shifting digital holographic microscopy experimental setup, the actual phase shifts between phase-shift interferograms were determined using the interferometric polarity method, the relationship between the rotation angle of the helical phase plate and the phase shift was calibrated, and the feasibility of the vortex phase shift was experimentally verified. Repeated measurement experiments were carried out on the micro-lens arrays, and the measurement results were compared with those of the ZYGO white light interferometer. The results indicate that a single micro-lens's average longitudinal sagittal height is 12.897 μm with an average relative error of 0.155%. The proposed method enables highly precise measurement of the surface topography of micro-optical elements. It offers the advantages of easy operation, high stability, and high accuracy.

     

  • loading
  • [1]
    王丹艺, 薛常喜, 李闯, 等. 基于微透镜阵列的电子内窥镜光学系统设计[J]. 光学学报,2018,38(2):0222003. doi: 10.3788/AOS201838.0222003

    WANG D Y, XUE CH X, LI CH, et al. Design of electronic endoscope optical system based on microlens array[J]. Acta Optica Sinica, 2018, 38(2): 0222003. (in Chinese). doi: 10.3788/AOS201838.0222003
    [2]
    李恒, 邵永红, 王岩, 等. 基于微透镜阵列和振镜扫描的光谱分辨多焦点多光子显微技术[J]. 中国激光,2010,37(5):1240-1244. doi: 10.3788/CJL20103705.1240

    LI H, SHAO Y H, WANG Y, et al. Spectrally resolved multifocal multiphoton microscopy using microlens array and galvo mirror scanning[J]. Chinese Journal of Lasers, 2010, 37(5): 1240-1244. (in Chinese). doi: 10.3788/CJL20103705.1240
    [3]
    LIU G, SCOTT P D. Phase retrieval and twin-image elimination for in-line Fresnel holograms[J]. Journal of the Optical Society of America A, 1987, 4(1): 159-165. doi: 10.1364/JOSAA.4.000159
    [4]
    黄郑重, 曹良才. 面向高通量的多通道复用数字全息成像技术[J]. 中国光学(中英文),2022,15(6):1182-1193. doi: 10.37188/CO.2022-0070

    HUANG ZH Z, CAO L C. Multi-channel multiplexing digital holographic imaging for high throughput[J]. Chinese Optics, 2022, 15(6): 1182-1193. (in Chinese). doi: 10.37188/CO.2022-0070
    [5]
    满天龙, 万玉红, 菅孟静, 等. 面向生物样品三维成像的光干涉显微技术研究进展[J]. 中国激光,2022,49(15):1507202. doi: 10.3788/CJL202249.1507202

    MAN T L, WAN Y H, JIAN M J, et al. Research progress in optical interference microscopy toward three-dimensional imaging of biological samples[J]. Chinese Journal of Lasers, 2022, 49(15): 1507202. (in Chinese). doi: 10.3788/CJL202249.1507202
    [6]
    KUMAR M, PENSIA L, KUMAR R. Highly stable vibration measurements by common-path off-axis digital holography[J]. Optics and Lasers in Engineering, 2023, 163: 107452. doi: 10.1016/j.optlaseng.2022.107452
    [7]
    MACH M, PSOTA P, ŽÍDEK K, et al. On-chip digital holographic interferometry for measuring wavefront deformation in transparent samples[J]. Optics Express, 2023, 31(11): 17185-17200. doi: 10.1364/OE.486997
    [8]
    LIU B C, FENG D Q, FENG F, et al. Maximum a posteriori-based digital holographic microscopy for high-resolution phase reconstruction of a micro-lens array[J]. Optics Communications, 2020, 477: 126364. doi: 10.1016/j.optcom.2020.126364
    [9]
    XIA P, WANG Q H, RI SH E. Random phase-shifting digital holography based on a self-calibrated system[J]. Optics Express, 2020, 28(14): 19988-19996. doi: 10.1364/OE.395819
    [10]
    XIA P, RI SH E, INOUE T, et al. Dynamic phase measurement of a transparent object by parallel phase-shifting digital holography with dual polarization imaging cameras[J]. Optics and Lasers in Engineering, 2021, 141: 106583. doi: 10.1016/j.optlaseng.2021.106583
    [11]
    RODRIGUEZ-ZURITA G, MENESES-FABIAN C, TOTO-ARELLANO N I, et al. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms[J]. Optics Express, 2008, 16(11): 7806-7017. doi: 10.1364/OE.16.007806
    [12]
    CARRÉ P. Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures[J]. Metrologia, 1966, 2(1): 13-23. doi: 10.1088/0026-1394/2/1/005
    [13]
    NOBUKAWA T, MUROI T, KATANO Y, et al. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings[J]. Optics Letters, 2018, 43(8): 1698-1701. doi: 10.1364/OL.43.001698
    [14]
    石侠, 朱五凤, 袁斌, 等. 非相干光照明数字全息实验研究[J]. 中国激光,2015,42(12):1209003. doi: 10.3788/CJL201542.1209003

    SHI X, ZHU W F, YUAN B, et al. Experimental study of the incoherent digital holography[J]. Chinese Journal of Lasers, 2015, 42(12): 1209003. (in Chinese). doi: 10.3788/CJL201542.1209003
    [15]
    钱晓彤, 田爱玲, 刘丙才, 等. 基于液晶空间光调制器的相移数字全息显微测量系统精度分析[J]. 光子学报,2022,51(4):0409003. doi: 10.3788/gzxb20225104.0409003

    QIAN X T, TIAN A L, LIU B C, et al. Precision analysis of phase shifting digital holography micromeasurement system based on LCSLM[J]. Acta Photonica Sinica, 2022, 51(4): 0409003. (in Chinese). doi: 10.3788/gzxb20225104.0409003
    [16]
    邓丽军, 黄星艳, 曾吕明, 等. 基于双色LED芯片的双波长像面数字全息显微术[J]. 光学学报,2018,38(1):0111004. doi: 10.3788/AOS201838.0111004

    DENG L J, HUANG X Y, ZENG L M, et al. Dual-wavelength image-plane digital holographic microscopy based on Bi-color LED chips[J]. Acta Optica Sinica, 2018, 38(1): 0111004. (in Chinese). doi: 10.3788/AOS201838.0111004
    [17]
    LIM J, CHOI H, PARK N C. Phase-shift digital holography using multilayer ceramic capacitor actuators[J]. Optics and Lasers in Engineering, 2022, 156: 107080. doi: 10.1016/j.optlaseng.2022.107080
    [18]
    SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science & Applications, 2019, 8(1): 90.
    [19]
    WANG Y L, WANG Y ZH, GUO ZH Y. OAM radar based fast super-resolution imaging[J]. Measurement, 2022, 189: 110600. doi: 10.1016/j.measurement.2021.110600
    [20]
    SHAW L A, PANAS R M, SPADACCINI C M, et al. Scanning holographic optical tweezers[J]. Optics Letters, 2017, 42(15): 2862-2865. doi: 10.1364/OL.42.002862
    [21]
    XU L Y, REN Y, CHEN L L, et al. Azimuth measurement based on OAM phase spectrum of optical vortices[J]. Optics Communications, 2023, 530: 129170. doi: 10.1016/j.optcom.2022.129170
    [22]
    FUJIMOTO I, SATO S, KIM M Y, et al. Optical vortex beams for optical displacement measurements in a surveying field[J]. Measurement Science and Technology, 2011, 22(10): 105301. doi: 10.1088/0957-0233/22/10/105301
    [23]
    SUN H B, WANG X H, SUN P. In-plane displacement measurement using optical vortex phase shifting[J]. Applied Optics, 2016, 55(21): 5610-5613. doi: 10.1364/AO.55.005610
    [24]
    WANG W P, HUANG S J, CHEN Y, et al. Three-dimensional refractive index measurement of special optical fiber based on optical vortex phase-shifting digital holographic microscopy[J]. Optical Engineering, 2019, 58(3): 034108.
    [25]
    ZHAO D E, JIA CH ZH, MA Y Y, et al. High-accuracy surface profile measurement based on the vortex phase-shifting interferometry[J]. International Journal of Optics, 2021, 2021: 6937072.
    [26]
    KOTLYAR V V, KOVALEV A A, SKIDANOV R V, et al. Simple optical vortices formed by a spiral phase plate[J]. Journal of Optical Technology, 2007, 74(10): 686-693. doi: 10.1364/JOT.74.000686
    [27]
    DENG J, WANG H K, ZHANG F J, et al. Two-step phase demodulation algorithm based on the extreme value of interference[J]. Optics Letters, 2012, 37(22): 4669-4671. doi: 10.1364/OL.37.004669
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article views(104) PDF downloads(22) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return