Volume 13 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
WANG Chao, XIAO Yong-chuan, LIN Shu-qing, YU Cai-bin, QU Peng-fei, LI Ru-zhang, SUN Li-jun. Generation of a 49-GHz, high-repetition-rate, all-polarization-maintaining, frequency-locked multicarrier[J]. Chinese Optics, 2020, 13(4): 745-751. doi: 10.37188/CO.2019-0191
Citation: WANG Chao, XIAO Yong-chuan, LIN Shu-qing, YU Cai-bin, QU Peng-fei, LI Ru-zhang, SUN Li-jun. Generation of a 49-GHz, high-repetition-rate, all-polarization-maintaining, frequency-locked multicarrier[J]. Chinese Optics, 2020, 13(4): 745-751. doi: 10.37188/CO.2019-0191

Generation of a 49-GHz, high-repetition-rate, all-polarization-maintaining, frequency-locked multicarrier

Funds:  Supported by Postdoctoral Science foundation of Chongqing (No. CSTC2019jcyj-bshx0103)
More Information
  • Corresponding author: wangchaohuster@163.com
  • Received Date: 25 Sep 2019
  • Rev Recd Date: 08 Nov 2019
  • Publish Date: 01 Aug 2020
  • Frequency-locked multicarrier with high repetition rate is an ideal tool for microwave channelization and optical communications. To meet the needs of those applications, we propose a multicarrier laser with a repetition frequency of 49 GHz. The I/Q Modulator (IQM) works at the Single-Frequency Shifting (SSB) state by carefully optimizing the Radio Frequencies (RFs) and their three bias points, resulting in a signal-to-noise ratio of 27.5 dB. The Recirculating Frequency Shifter (RFS) architecture is employed to generate an optical comb with high flatness. By optimizing the power of RFs for the balance of gain and loss of intracavity, we successfully generate 28 frequency-locked subcarriers with flatnesses lower than 3 dB and Tone-to-Noise Ratios (TNR) larger than 29 dB. Meanwhile, an Fabry-Perot (FP) etalon is used to increase the repetition-rate, resulting in 14 frequency-locked subcarriers with flatnesses lower than 2.7 dB, TNR larger than 19 dB, average powers of more than 9 dBm and carrier spacings at 49 GHz. By applying all-polarization-maintaining components and integrated technology, the system shows one-push and long-term running properties. The standard deviation of power jitter of the multi-carrier frequency comb through the half hour is only 0.5%, which shows that this scheme has great potential applications in channel communications and microwave channelization.

     

  • loading
  • [1]
    ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser &Photonics Reviews, 2016, 10(5): 711-734.
    [2]
    XIE X J, DAI Y T, XU K, et al. Broadband photonic RF channelization based on coherent optical frequency combs and I/Q demodulators[J]. IEEE Photonics Journal, 2012, 4(4): 1196-1202. doi: 10.1109/JPHOT.2012.2207380
    [3]
    JI N, MAGEE J C, BETZIG E. High-speed, low-photodamage nonlinear imaging using passive pulse splitters[J]. Nature Methods, 2008, 5(2): 197-202. doi: 10.1038/nmeth.1175
    [4]
    DESURVIRE E, KAZMIERSKI C, LELARGE F, et al. Science and technology challenges in XXIst century optical communications[J]. Comptes Rendus Physique, 2011, 12(4): 387-416. doi: 10.1016/j.crhy.2011.04.009
    [5]
    王治昊, 余锦, 樊仲维,等. 全固态被动调Q皮秒激光技术研究进展[J]. 发光学报,2013,34(7):900-910. doi: 10.1038/nphoton.2007.139

    WANG H ZH, YU J, FAN ZH W, et al. Research progress of all-solid-state passively Q-switched picosecond laser technology[J]. Chinese Journal of Luminescence, 2013, 34(7): 900-910. (in Chinese) doi: 10.1038/nphoton.2007.139
    [6]
    GHELFI P, LAGHEZZA F, SCOTTI F, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345. doi: 10.1038/nature13078
    [7]
    康喆, 刘明奕, 刘承志,等. 基于微纳光纤-单壁碳纳米管可饱和吸收体的被动调Q掺镱光纤激光器[J]. 发光学报,2017,38(5):630-635. doi: 10.1364/OL.29.000250

    KANG ZH, LIU M Y, LIU CH ZH, et al. Passively Q-switched Yb3+ -doped fiber laser based on microfiber-single wall carbon nanotube saturable absorber[J]. Chinese Journal of Luminescence, 2017, 38(5): 630-635. (in Chinese) doi: 10.1364/OL.29.000250
    [8]
    崔铮, 陈毅, 姚宝权,等. 基于多层石墨烯可饱和吸收体的被动调Q Ho∶YAG激光器[J]. 发光学报,2016,37(6):696-700. doi: 10.1126/science.288.5466.635

    CUI ZH, CHEN Y, YAO B Q, et al. Passively Q-switched Ho∶YAG laser with multilayer graphene-based saturable absorber[J]. Chinese Journal of Luminescence, 2016, 37(6): 696-700. (in Chinese) doi: 10.1126/science.288.5466.635
    [9]
    GORDON E I, RIGDEN J D. the fabry-perot electrooptic modulator[J]. Bell System Technical Journal, 1963, 42(1): 155-179. doi: 10.1002/j.1538-7305.1963.tb04006.x
    [10]
    FERDOUS F, MIAO H X, LEAIRD D E, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs[J]. Nature Photonics, 2011, 5(12): 770-776. doi: 10.1038/nphoton.2011.255
    [11]
    PAPP S B, DIDDAMS S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb[J]. Physical Review A, 2011, 84(5): 053833. doi: 10.1103/PhysRevA.84.053833
    [12]
    WU R, SUPRADEEPA V R, LONG C M, et al. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms[J]. Optics Letters, 2010, 35(19): 3234-3236. doi: 10.1364/OL.35.003234
    [13]
    WU R, TORRES-COMPANY V, LEAIRD D E, et al. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation[J]. Optics Express, 2013, 21(5): 6045-6052. doi: 10.1364/OE.21.006045
    [14]
    DOU Y J, ZHANG H M, YAO M Y. Generation of flat optical-frequency comb using cascaded intensity and phase modulators[J]. IEEE Photonics Technology Letters, 2012, 24(9): 727-729. doi: 10.1109/LPT.2012.2187330
    [15]
    LI J P, LI X, ZHANG X G, et al. Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission[J]. Optics Express, 2010, 18(17): 17597-17609. doi: 10.1364/OE.18.017597
    [16]
    TIAN F, ZHANG X G, LI J P, et al. Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter[J]. Journal of Lightwave Technology, 2011, 29(8): 1085-1091. doi: 10.1109/JLT.2011.2109053
    [17]
    LI J P, MA H T, LI ZH H, et al. Optical frequency comb generation based on dual-polarization IQ modulator shared by two polarization-orthogonal recirculating frequency shifting loops[J]. IEEE Photonics Journal, 2017, 9(5): 7906110.
    [18]
    ZHANG J W, YU J J, CHI N, et al. Stable optical frequency-locked multicarriers generation by double recirculating frequency shifter loops for Tb/s communication[J]. Journal of Lightwave Technology, 2012, 30(24): 3938-3945. doi: 10.1109/JLT.2012.2206371
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1764) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return