目的:针对含数字微镜阵列(DMD)的长波红外偏振光学系统中产生的衍射现象会导致系统中偏振像差发生变化,从而造成长波红外偏振光学系统偏振测量精度下降的问题,提出一种含DMD的长波红外二次成像光学系统偏振像差的分析及补偿方法。方法:首先,构建长波红外偏振光学系统中波长与DMD尺寸关系的衍射与偏振像差特性传输模型,提出基于矢量衍射—偏振光琼斯矢量理论的偏振像差分析方法。其次,推导DMD的偏振像差和偏振度情况,确定DMD的最佳衍射级次、入射角与衍射效率,进而设计含DMD的二次成像长波红外偏振光学系统,得到DMD衍射特性对偏振像差的影响情况。最后,通过倾斜投影物镜、镜片镀膜及减小表面入射角来补偿光学系统的偏振像差,以解决衍射现象对长波红外偏振光学系统偏振像差产生的影响。结果:仿真结果表明,系统全视场调制传递函数在截止频率处均接近衍射极限,最大畸变小于0.2%,成像质量良好,整体系统的二向衰减经补偿后减小到原来的1/12。结论:该分析模型能够揭示衍射与偏振像差之间的关系,补偿方法可以使偏振像差有效地降低。
衍射光波导因其轻薄的外形、大视场角和大的眼动范围,成为实现增强现实(Augmented reality, AR)近眼显示技术最有前景的方案之一。目前商业化AR光波导仿真软件大多由国外公司开发,未见到有国产3D可视化的光波导仿真设计软件报道。据我们所知,本文工作为国内首款自主研发的基于光线场追迹的3D可视化光波导设计仿真模块。并应用该仿真模块设计了一款二维出瞳扩展的衍射光波导,展示了从光栅的k域分析、光波导中光栅各个区域的自动布局、光波导优化到光线场追迹仿真的完整设计流程。该仿真模块不仅能够对单个的波导器件进行仿真,还能够对整个近眼显示光学系统进行仿真,包括微显示屏、微型投影光机与人眼模型,实现从微观到宏观尺度仿真,体现了该光波导仿真模块的功能和优势。该光波导仿真设计模块为国内光学工程师提供了一种高效、稳定的光波导设计仿真工具,将助力我国AR光技术产业化的发展。
随着全息平视显示系统、虚拟现实增强显示等技术的广泛应用,全息场景对再现图像质量要求将更高,再现图像尺寸将更符合人眼视觉特征。本文根据计算全息再现成像原理,采用GS算法对输入与输出平面光场分布进行正、逆傅里叶变换迭代求解原始图像在不同特征参数(线宽、圆环直径)和不同计算采样间隔下的相位分布,并仿真计算得到相应的再现图像。利用液晶空间光调制器搭建全息再现实验光路,通过加载不同原始图像的相位分布图进行再现实验,采用相机拍摄得到远场衍射全息再现图像并进行图像处理得到其实际特征尺寸,实验结果表明再现图像特征尺寸与原始仿真图像特征尺寸基本呈线性变化关系,再现图像尺寸与采样间隔呈非线性变化关系,且与推导的理论关系曲线一致。为进一步验证结论的正确性,设计预期再现图像尺寸为圆环直径0.943mm,中心十字线宽0.015mm时,仿真计算得到预期目标原始仿真图像的线宽为3pixel、圆环直径594pixel、采样间隔25μm,通过再现实验测量得到再现图像圆环直径为0.93mm,线宽0.017mm,误差精度在0.02mm以内。研究结果对全息显示、AR/VR等应用场景提高虚拟显示图像尺寸真实性提供有益参考。
为了对日球成像仪太阳杂光抑制能力进行定量化的评价,开展了日球成像仪太阳杂光抑制能力的测试方法研究和实验验证。提出了一种通过将前端光阑与相机分段测试进而实现在实验室条件下测试日球成像仪太阳杂光抑制能力的方法,避免了在真空条件下测试带来的结构散射误差过大进而影响测试结果准确性的问题。利用该方法在实验室条件下对一台日球成像仪太阳杂光抑制能力进行了测试。实验结果表明:日球成像仪整机的PST在WACH1相机处为1.4×10-8,在WACH2处为4.3×10-9。对测试结果进行了误差分析,得到了测试时的随机误差为21.6%,系统误差总和在WACH1处引起的PST为1.1×10-8,在WACH2处为4.2×10-9,测试精度满足要求,表明了该测试方法的可行性和准确性。本文的研究为日球成像仪太阳杂光抑制能力的测试提出了一种新的途径。
摘 要:当前市面上的视觉训练产品大多采用电子屏幕显示远近大小交替变化的物体,通过观看屏幕刺激睫状肌,进行视功能训练,但该方法存在蓝光辐射,对人眼构成潜在危害。针对此问题,设计了一种基于Varifocal变焦结构的视光学系统,该系统通过控制两组垂直于光轴镜片的横向移动实现光焦度连续变倍,模拟物体远近的变化,刺激睫状肌调节训练。本文首先推导可变焦距透镜的面型限制,加入可变焦距球面效应方程优化Alvarez透镜基础面型,并采用Zemax软件进行设计。所设计的透镜面型由三阶XY多项式自由曲面表征,其中两组透镜最大相对垂轴偏移量为5.6mm,实现屈光度在+4D—-8D的连续变倍。设计结果表明,全视场调制传递函数在奈奎斯特频率30lp/mm处均大于0.3,均方根(RMS)半径值接近于艾里斑半径值,畸变均小于2%,该光学系统成像质量较好。
本文提出采用多通道条纹跟踪方法以实现大口径稀疏孔径望远镜的有效共相调整,该方法允许同时进行多个光路的干涉测量,避免了传统干涉方法中沿镜面边界进行成对测量的需要,从而提高了检测效率并降低了系统复杂性。使用光学波前理论分析了多光束干涉过程的原理和基于光纤直接连接的共相检测模块构造,并对通过多路径干涉获得的系统面型进行了误差分析,探索了干涉方法的潜在应用。最后,通过实验验证实现了原理贯通,通过平场校准和非相干数字合成,实现了优于0.4的干涉条纹对比度,并且动态测量范围优于工作中心波长(
本文提出了一种具有电场调控层的新型改进型单行载流子光探测器(MUTC-PD)。该光探测器中,崖层后新增的p型掺杂电场调控层能够优化收集层中的电场强度,从而使光生电子在收集层中以峰值漂移速度输运,同时能够增强耗尽吸收层中的电场强度,优化其中光生载流子饱和速度输运特性。此外,器件收集层中光生电子的峰值漂移速度输运特性可以进一步优化其寄生电容特性,从而显著提升光探测器的3 dB响应带宽。经过仿真优化设计,获得了响应度为0.502 A/W,3-dB带宽为68 GHz的MUTC-PD,可应用于100 Gbit/s光接收机。
作为观测大气风的先进设备,星载多普勒非对称空间外差(DASH)干涉仪也面临着与相位畸变相关的挑战,特别是在临边探测场景中。本文讨论了星载DASH干涉仪的干涉图建模和相位畸变校正技术。对临边观测中有与无多普勒频移的相位畸变干涉图进行了建模,并通过数值模拟验证了解析表达式的有效性。仿真结果表明,在使用洋葱皮反演算法处理相位失真干涉图时,误差会逐层传播。相比之下,相位畸变校正算法可以实现有效的校正。该相位校正方法可成功应用于星载DASH干涉仪干涉图中的相位畸变校正,为提高其测量精度提供了可行的解决方案。
本文创新性地采用蓝光半导体泵浦掺镨氟化钇锂晶体产生550 nm激光,并通过高效倍频技术,获得275 nm连续紫外激光输出。采用全新的快轴准直的蓝光半导体激光器作为泵浦源,结合折叠腔和新颖的镀膜技术,并采用布切的BBO晶体进行腔内倍频,获得了351 mW的275 nm基模深紫外激光输出。目前为止,这是首次基于掺镨氟化钇锂获得275 nm激光的报道。
受航天器体积和重量限制,航天星载遥感探测系统难以兼顾大口径、高分辨率以及高光谱信息同步获取的需求。针对这一问题,本文提出一种新型的高光谱成像系统,采用主次镜共用、多通道分离同轴五反光路设计,结合Offner凸面光栅光谱仪分光技术,实现从可见到长波红外的高光谱探测。该系统主镜口径为
为了实现高精度、高可靠性的动态场景模拟,设计了一套短波中波多波段折反射式共口径光学系统。该系统结合了反射、折射和共口径光路的优势,该系统分为主光学系统、短波光学系统和中波光学系统,3个系统分别独立设计。通过理论计算得到光学系统的初始结构,再利用光学设计软件对光学参数作进一步细化,最后,按照光瞳匹配原则将各分系统组合在一起,并对系统的成像质量作进一步优化设计。利用调制传递函数(Modulation Transfer Function,MTF)和畸变等定量评价指标,仿真验证了系统设计的合理性。结果显示:所设计的短波光学系统视场角为±0.107°、焦距为
为研究典型机场地物材质的偏振特性,并为偏振成像仪器研制提供所需的理论模型,本文以P-G模型为基础,构建新的二向偏振分布函数(BPDF)模型。本文分析了当大角度光线入射时阴影遮蔽效应更严重的问题,创新性地提出将镜面反射点等效为三维球体的解决方案,并利用球面三角学公式对阴影遮蔽函数进行优化。同时,考虑到不同目标具有独特的色散特征,本研究引入色散模型代替受波长影响的传统二向反射分布函数(BRDF)参量,综合考虑漫反射、体散射,构建了新的BPDR模型。通过多角度BRDF实验,与基于动态TS算法的模型参量拟合,得到典型机场地物材质的线偏振度与模型六参量拟合结果。经过多组测试取均值,得到拟合参量中均方根粗糙度参量的测试值,验证了修正BPDF模型的有效性。在仿真分析阶段,以均方根误差(RMSE)作为精度评价指标,将修正BPDF模型、对照模型、实验结果三者进行对比,系统分析了探测角、方位角、入射角对偏振特性的影响。结果显示:4种实验目标在探测角变化时,修正模型的精度较对照模型分别提升了4.39%、4.00%、4.17%、5.26%,且在大探测角下的RMSE仍小于0.05,充分证明修正后模型可用于机场地物目标等粗糙材质的偏振特性研究。此外,通过仿真分析拟合参量对目标偏振特性的影响,发现线偏振度与折射率呈正比关系,而与表面粗糙程度呈反比关系。实验和仿真证明了修正BPDF模型的准确性,为机场地物目标的偏振特性研究提供了思路。
为构建一套基于热重-可调谐半导体激光吸收光谱(TG-TDLAS)技术的煤热解HCN气体浓度检测系统,并结合波长调制技术进一步提高系统的稳定性和灵敏度,本文利用HCN在波长
现有红外与可见光图像融合方法难以充分提取和保留源图像细节信息与对比度,导致纹理细节模糊。针对这一问题,本文提出了一种跨域交互注意力和对比学习引导的红外与可见光图像融合方法。首先,设计了双支路跳跃连接的细节增强网络,从红外和可见光图像中分别提取和增强细节信息,并利用跳跃连接避免信息丢失,生成增强后的细节图像。接着,构建了联合双分支编码器和跨域交互注意力模块的图像融合网络,确保特征融合时充分进行特征交互,并通过解码器重建为最终的融合图像。然后,引入了通过对比学习块进行浅层和深层属性和内容的对比学习网络,优化特征表示,进一步提升图像融合网络的性能。最后,为了约束网络训练以保留源图像的固有特征,设计了一种基于对比约束的损失函数,以辅助融合过程对源图像信息的对比保留。将提出方法与前沿融合方法进行了定性和定量的分析比较。在TNO、MSRS、RoadSence数据集上的实验结果表明:本文方法的8项客观评价指标均较对比方法有显著提升。本文方法融合后图像具有丰富的细节纹理、显著的清晰度和对比度,有效提高了道路交通、安防监控等实际应用中的目标识别和环境感知能力。
快速测定液相样品中的稀土元素(REEs)对离子吸附型稀土资源勘探与开发、萃取过程质量控制、稀土资源循环利用以及核工业废水监测等领域具有重要意义。为了降低激光诱导击穿光谱(LIBS)对液体样品中REEs的检出限,本研究采用超疏水阵列辅助电火花增强激光诱导击穿光谱法(SHA-SD-LIBS)测定液相样品中的REEs。选择最佳的实验条件,以La II 394.91 nm、Er 402.051 nm、Ce II 418.66 nm、Nd II 424.738 nm、Gd II 443.063 nm和Pr 492.46 nm作为特征谱线,对6种不同浓度的稀土元素(La、Er、Ce、Nd、Gd、Pr)溶液建立标定曲线进行定量分析。结果表明,各标定曲线拟合系数
为了探索二氧化钛(TiO2)/聚对苯乙烯磺酸钠(PSS)纳米薄膜对Kretschmann型表面等离子体共振传感器的影响,系统地研究了沉积不同厚度TiO2/ PSS纳米薄膜后传感器的光谱变化,并通过理论模拟分析了光谱变化的内在原因。首先,采用静电层层自组装技术在溅射了金膜的玻璃芯片表面原位沉积了不同层数的TiO2/PSS薄膜,并实时记录了相应的反射光谱。然后,对原始反射光谱数据进行处理,使光谱曲线更加清晰可见。最后,用MATLAB软件编程对实验结果进行了模拟分析。结果显示,在450~900 nm的波长范围内,随着TiO2/PSS层数的增加,传感器光谱中先后出现了4种不同类型的反射峰,这4类反射峰分别对应了传感器的表面等离子体共振模式、横磁模的一阶模式、二阶模式和三阶模式。研究结果表明通过控制TiO2/PSS薄膜的厚度能调制Kretschmann型传感器的感应模式和反射光谱类型。
相位敏感型光时域反射系统(Φ-OTDR)的灵敏度受激光器的相位噪声、掺铒光纤放大器的自发辐射噪声、光电探测器的散粒噪声及热噪声等系统固有噪声和环境随机噪声的制约,因此,本文研究光时域反射数据的降噪算法,在不降低系统频率响应范围的条件下提高系统的信噪比。本文提出Savitzky-Golay平滑算法,选择固定长度的滑动窗口,对窗口内的光时域反射数据进行降噪处理,同时保持数据的采样频率,并搭建实验系统进行验证。实验结果显示:采用Savitzky-Golay平滑算法,系统的信噪比相对于原始信号逐差法的信噪比提高了5.41 dB,与常用的累加平均算法、滑动平均算法相比信噪比分别提升3.39 dB和5.05 dB。结果表明:Savitzky-Golay平滑算法可提高Φ-OTDR系统的灵敏度和准确度,使其能够精准地感知微小振动事件,以降低系统误报率。
传统的多线激光三维重建技术由于多线激光线不可避免地会受到噪声的影响,导致检测的激光中心坐标存在一定误差,这将导致直接使用基于极线约束找到的匹配点进行三维重建时无法获得高精度的三维数据。为了解决上述问题,本文提出了一种基于几何估计方法来实现多线激光的三维重建。首先,标定出多线激光的二次曲面方程,结合双目极线约束的方法可以计算出多线激光的初始匹配点。在找到正确的初始匹配点之后,利用图像点与双视图极线的关系约束来建立一个几何距离最小化的估计模型。通过这个几何距离最小化的优化估计,可以重新计算出更加符合极线约束的新匹配点,从而提高激光图像点的匹配精度,最后根据这些新的匹配点来完成多线激光的三维重建。实验结果显示:相较于传统方法,本文提出的算法在匹配度和精度方面表现更优,最终的三维重建精度可以达到0.02 mm左右。通过这种方法可以显著提高双目多线激光重建的整体精度,从而获得更加精确和可靠的三维数据。
三阶拉曼光纤放大器因其较高的增益与较低的噪声指数被用于长距离无中继光传输中。三阶拉曼放大器作为拉曼放大的前沿技术,目前国内的研究较少,对于泵浦的配置与放大器的性能关系还不够明晰。为此,本文通过实验测试了二阶泵浦种子光对三阶拉曼光纤放大器性能的影响。首先用功率耦合方程定性分析了不使用二阶泵浦种子光的可行性,之后实验验证了在缺少二阶泵浦种子光的条件下,三阶拉曼光纤放大器仍能实现对信号光的增益,但较有二阶泵浦种子光时效率会降低。本文搭建了47波200 km的波分复用传输系统进行实验验证。结果表明:在没有二阶泵浦种子光的情况下三阶拉曼光纤放大器也可以实现对信号光的增益,但引入二阶泵浦种子光能显著提升性能,仅25 mW的二阶泵浦种子光就能使信号得到最少3.7 dB,平均6 dB的功率提升以及平均0.8 dB的光信噪比提升。省去二阶泵浦种子光能降低成本,但引入二阶泵浦种子光能显著提升三阶拉曼放大器的性能。
CMOS图像传感器是当今应用最广泛的传感器之一,已应用在航空航天,医学成像,工业检测,军事侦察等领域。然而,CMOS图像传感器的激光干扰和损伤随之也成为国内外相关领域的研究热点。为了研究脉冲激光对背照式CMOS图像传感器的影响,本文选用Sony IMX178背照式CMOS图像传感器作为靶材,基于热传导方程,利用有限元仿真软件COMSOL Multiphysics对比计算了不同参数单脉冲激光辐照下CMOS图像传感器的温度分布。计算结果表明,传感器在532 nm (1 ns)、
在相移轮廓术中,非标准相移轮廓术结合时域相位展开算法仅需较少的条纹图案就可进行测量,因而具备较高的测量效率。鉴于条纹频率对测量精度有显著影响,本文分析了非标准相移轮廓术的时域相位展开中的相位误差,并进一步评估其可靠性。研究发现,相位展开的可靠性与条纹频率分配密切相关。据此,本文引入了一种最优条纹频率分配策略。基于该策略,本文对非标准相移轮廓术的不同频率组合进行了对比实验。实验结果显示,相比于3
为了解决同轴高次非球面的高精度面形检测问题,本文提出了一种基于CGH的同轴高次非球面零位补偿检测设计方法。利用所提方法,可以实现同轴非球面补偿设计中各衍射级次的有效分离,可实现对于待测镜面的零位补偿设计。结合工程实例,本文对一口径为260 mm的同轴高次非球面反射镜实现了零位补偿检测设计。从CGH设计结果可以看出,基于本文检测设计方法,其理论设计检测残差(RMS值)可以达到0 nm。此外,还完成了对于该同轴高次非球面反射镜的实际检测。针对检测过程中的误差源进行了误差分析,以验证本方法的可靠性与精度。
扫描干涉场曝光技术(SBIL)是制作单体大面积高精度光栅的有效途径,采用双频激光干涉仪反馈工作台位置进行干涉条纹的精确拼接,会不可避免地引入光栅刻线误差,导致光栅衍射波前质量降低。针对工作台的位移测量误差,分析了激光干涉仪自身结构因素引起的本征误差,提出了复杂环境下激光干涉仪本征误差的指标评价方法。建立了实际工况与经验公式相结合的死程误差和测量光程变化误差理论模型。通过构建平移和旋转算子,推导了工作台任意点旋转和平移之间的耦合关系,模拟了不同工作台姿态滚转角下的测量误差。进行了位移误差实验和光栅扫描曝光实验。实验结果表明,位移误差与理论计算结果一致,制作200 mm×200 mm光栅的衍射波前为0.278
本文提出一种针对涡旋光轨道角动量的拓扑荷差值检测技术。通过两束拓扑荷不同的涡旋光得到周期性的差值法强度分布图,读取其中一个周期的光斑个数,即可快速准确地计算出待测涡旋光的轨道角动量。相比干涉法和衍射法等需要接收完整涡旋光的传统检测方法,拓扑荷差值法只需接收小部分涡旋光即可进行测量,这在高阶、大尺寸涡旋光测量方面有非常大的优势,在涡旋光的远距离自由空间光通信方面具有潜在应用。
针对标签分布不平衡的涡旋光束轨道角动量(OAM)识别问题,提出了一种基于全局代价的合成少数类过采样技术(SMOTE)的深度极限学习机(DELM)的衍生模型。与典型的机器学习方法不同,本文所提方法能够获得映射模型解析表达,避免了反复的参数优化过程,使模型适用于工程应用。在数据生成阶段,利用协方差的逆矩阵去除量纲的影响,有效度量了同一类样本的差异性。在模型选择阶段,考虑了光信号在大气湍流中的传输特性,采用DELM表征光斑样本和标签之间的映射关系,并用快速迭代收缩阈值FISTA算法计算模型的解析表达式。在不同强度的大气湍流数据集上进行实验,对比了WELM、k近邻等代表性方法性能。实验结果表明,在不同的湍流强度下,所提方法均方根误差达到
本文提出了一种基于微机电系统(MEMS)技术的光纤法布里-珀罗压力传感器,可用于冲击波等瞬态压力测量。该传感器敏感单元由深反应离子刻蚀(DRIE)后的单晶硅和BF33玻璃晶圆通过阳极键合制成,并通过激光熔接技术实现光纤与敏感单元的无胶化集成。通过搭建信号解调实验平台,对静态和动态压力环境下传感器性能进行测试。实验结果表明,该传感器在0~10 MPa压力范围内具有良好的线性响应,满量程非线性误差为0.41%,迟滞为0.37%,传感器的上升时间为8.5 μs。该传感器具备抗电磁干扰、可批量化制备、一致性高、成本低等优点,理论谐振频率为1.39 MHz,展示了其在爆炸场等恶劣环境下进行动态压力测量的良好应用前景。
量子噪声是影响激光干涉引力波探测的主要噪声之一。为应对量子噪声,进一步提高探测灵敏度,本文应用量子传递函数方法对传统迈克尔逊干涉仪的量子噪声源头归咎进行了重新推导,结果表明,对于辐射压噪声和散粒噪声这两类量子噪声,辐射压噪声可直接归咎于干涉仪暗口处真空涨落的正交振幅涨落,散粒噪声仅在一定条件下可完全归咎于暗口处的正交相位涨落。在明确量子噪声的源头归咎前提下,压缩光技术可提高探测器的灵敏度,但当采取不等臂干涉探测方案时,必须注意两不等臂臂长之间的长度差异关系。最后,本文也提及了如若在空间引力波探测中推广应用压缩光技术时可能需要注意的问题,包括弱光锁相放大技术的影响、不同干涉仪间的联系、数据后处理的影响以及压缩光的产生。
分焦平面偏振相机是一种应用广泛的集成化偏振成像系统,微偏振片阵列的像素间串扰是此类偏振成像系统特有的干扰因素,且串扰光强随入射光偏振特性变化而变化,给目标偏振信息的测量带来了误差。本文回顾了偏振串扰模型的发展历程,将相关研究中涉及到影响串扰的全部因素进行了归纳。以感光芯片参数和光学系统参数为系统关键因素,讨论了相机应用过程中的串扰原因-结果模型以及与时间噪声的关系,分析了串扰导致的各像素检偏参数的变化结果,重点总结了串扰的因素相关性、实验可重复性、误差随机性和参数可标定性,并对串扰模型的未来发展趋势进行了展望。
为测量大气相干长度这一表征大气湍流对自由空间光通信链路性能影响的重要指标,本文提出了一种将扩展目标作为信息源的新策略,即结合波前结构函数法与扩展目标偏移量算法直接对大气相干长度进行估计。现有的差分像运动监测器等方法通常依赖于导星目标,但在水平通信链路中难以设置合适的导星目标,其实际应用效果受到显著限制。因此,将扩展目标作为直接测量的信息源,为大气相干长度测量提供了一种可行的解决方案。本文首先回顾了现有主流算法的原理及研究现状,分析了现有算法对导星目标的依赖性及其在水平链路应用中的局限性。在此基础上,提出一种将改进归一化互相关算法与波前结构函数法相结合的测量方案,用于扩展目标场景估计大气相干长度。与传统测量方法相比,该方法能够在水平链路基于扩展目标条件下有效开展测量,同时显著减少了系统的复杂度和设备成本。为验证所提方法的有效性与测量精度,本文设计开展了仿真与实验研究。结果表明,该方法测得相干长度值与差分像运动监测器法及波前相位方差法高度一致,测量精度误差约为4%。这一结果证明了该方法在大气相干长度评估中的有效性,可为提升自由空间激光通信的可靠性提供有效参考。
为了实现空间目标的广域探测,本文设计并研制了一种宽光谱(400 nm−
随着生物荧光技术的迅速发展,对信号传输的精度要求也越来越高。滤光膜作为系统分光的核心器件,其光谱特性直接影响系统的传输精度。本文选用Nb2O5与SiO2作为高低折射率材料,利用高斯变迹函数结合Optilayer膜系软件对多通道负滤光膜进行膜系优化设计。采用电感耦合磁控溅射沉积技术,在D263T基板上研制多通道负滤光膜。通过对膜层敏感度反演分析,解决了膜厚控制误差影响光谱偏移及通带透过率降低的问题。研究了工艺参数对膜层粗糙度的影响因素,通过调节ICP功率有效改善膜层表面粗糙度。所研制的多通道负滤光膜45°入射时,中心波长576 nm、639 nm、690 nm反射带半宽度分别为5 nm、6 nm和7 nm,平均反射率约为98%。透射区545~562 nm,597~624 nm,655~675 nm和708~755 nm,平均透射率达到92%。多通道负滤光膜通过耐环境测试与光谱稳定性测试,满足生物荧光系统中多通道负滤光膜的使用要求。
相比传统的单频连续域束缚态(BIC),双带BIC具有更高的自由度和功能性。因此,实现双带BIC的独立调控将进一步增强其优势,最大化其性能。本研究设计了一种在太赫兹(THz)波段实现双带BIC的全介质超表面。通过调节两种不对称结构参数,可以实现对两个对称保护BIC的独立控制。此外,通过改变硅孔形状,验证了该设计对几何形状具有较强的鲁棒性。最后,测试结果表明,两个BIC的优值(FOM)均可达到109。本研究为双频BIC的实现与调谐提供了一种新的方法,并为多模激光器、非线性光学、多通道滤波及光传感等领域的应用提供了更多可能性。
为提高红外波段膜厚准确控制精度和波长精准定位等问题,本课题基于LabVIEW编程语言,在光学膜厚监控系统的基础上,进行变量耦合的动态监控光学膜厚补偿技术的研究。基于光的干涉以及光学薄膜设计理论,采用光电极值法构建数学模型,重点解决极值点判停误差和滤波除噪等问题,高度还原实时采集的光量值的监控数据,实时同步拟合膜厚监控的透射曲线,计算并拟合膜厚极值点以及任意目标厚度对应的停镀点,实现膜厚有效准确的判停。为了验证光控系统的可靠性和稳定性,通过制备
有机-无机杂化非铅钙钛矿因其无生物毒性和环境污染性引起了广泛关注,其中MA3Sb2I9兼具稳定0D结构和非铅的特点,具有应用于稳定、高效光电探测领域的潜力。本文利用MACl后处理的方法来改善反溶剂获得的MA3Sb2I9钙钛矿薄膜的质量,促使MACl与钙钛矿薄膜之间出现Cl-Sb键相互作用,钝化了MA3Sb2I9薄膜表面的I−空位及晶界缺陷。该处理不仅能够有效改善薄膜的表面形貌和结晶性,而且降低了薄膜表面缺陷态密度,提高了载流子提取和传输效率。基于优化薄膜制备的自供电光电探测器件的灵敏度由3.89 × 107 Jones提升至5.72 × 108 Jones,提升了一个数量级;上升/下降时间也由37/76 ms降低到31/37 ms,器件的响应速度也得到了提升。
有效的假设评估度量在精确的点云配准中起着至关重要的作用,能够在评估过程中识别出正确的假设。然而,目前的度量方法未能合理地对假设进行评估,相关研究仍然较为有限。传统的内点计数度量对参数变化和不同的应用场景较为敏感,而最新的基于点对的度量在低参数下表现不佳,且基于点云的度量计算时间较长。本文提出了一种创新的假设度量方法,将通过三角形投票方法获得的点对置信分数与基于点对的度量相结合。该方法核心观点是:一个好的假设应能将高置信分数的对应点精确对齐,从而产生更高的得分贡献。此外,本文还提出了两种改进现有的基于内点的度量有效性的方法:忽略具有较小变换误差的内点距离,以及抑制由大量低置信度对应点引起的错误高分贡献。在三个数据集上的对比实验表明,所提出的度量方法能够提升所有已知的基于点对的度量,并在默认参数设置下有1%~16.95%不同程度的配准性能提升和1.67%~10.79%的时间节约,在时间消耗、鲁棒性和配准性能之间实现了更好的平衡。特别地,改进的内点计数度量具有更加鲁棒和精确的配准性能。因此,本文所提出的度量能够在RANSAC的假设评估阶段识别出更正确的假设,从而实现精确的点云配准。
旋转式大气色散校正器(Atmospheric Dispersion Corrector,ADC)在大口径天文望远镜的大气色散校正中得到了广泛应用。为得到旋转式ADC最佳优化设计方法、有效补偿色散并抑制由ADC引入的光轴偏移,本文基于传统的旋转式ADC大气色散补偿理论,建立了旋转式ADC光线路径的矢量模型,进而推导了色散补偿及光轴偏移矢量模型。基于该数学模型仿真分析了ADC不同参数对色散补偿效果、棱镜旋转角度及光轴偏移的影响。仿真结果表明:不同材料组合和不同胶合型式的旋转式ADC,在补偿相同的大气色散时,棱镜组对旋角度相差不大,其差值随天顶角的增加而增加;选择折射率在中心波长附近位置相同的材料,可以降低ADC出射光色散残差,提高色散补偿效果。ADC旋转补偿不同天顶角的大气色散时,系统光轴偏移角度随胶合面数量的增加而减小;每增加一个胶合面数量,光轴偏移角度可下降一个数量级。实际应用设计ADC时,可通过控制胶合数量及材料选取的方法有效补偿色散并抑制光轴偏移。
条纹投影技术在三维测量和表面形貌重建中得到广泛应用,其相位质量是决定测量精度的关键因素。然而,输入光强和输出光强之间的非线性效应是导致相位误差的主要来源之一。为了解决这一问题,本文提出了一种新的系统非线性主动校正方法。该方法首先通过对标准平面投影少量的均匀灰度图像,获取输入光强与输出光强的变化规律。然后,将这一规律与系统非线性主动校正结合,建立了基于输入输出光强变化的系统非线性模型。利用遗传算法求解最优编码值,从而通过条纹编码主动校正了投影条纹。校正后的条纹有效减少了非线性效应带来的影响,大幅提升了相位获取的质量。为了验证所提方法的有效性,以三步相移为例进行了计算机仿真。结果表明,标准误差降低了88%,最大误差减少了85.5%。在实际标准平面实验中,校正后标准相位误差由
本文利用基于光束传播方法(Beam Propagation Method,BPM)的有限元仿真模型研究了氮化镓(GaN)平面光波导的传输损耗特性,针对传统GaN波导损耗较大的问题提出了工艺优化方案。通过构建完整的传输损耗模型,系统分析了波导几何参数对传输特性的影响,重点研究了顶部刻蚀和背后减薄两种优化工艺的改善效果。研究表明,这两种工艺均可显著降低波导传输损耗:顶部刻蚀工艺可将损耗从2.29 dB/mm降至0.19 dB/mm,背后减薄工艺可降至0.24 dB/mm。此外,本文还量化分析了制造工艺引入的侧壁夹角和表面粗糙度等缺陷对传输损耗的影响,并通过参数优化确定了实现可见光单模传输的关键结构尺寸。研究成果为设计和制备低损耗GaN平面光波导提供了理论依据和工艺指导。
与传统光电位移测量技术相比,基于数字图像处理方法的位移测量技术具有更高的容错性、灵活性,因而成为当前的研究热点之一。为了实现高精度、高可靠性角位移测量,建立了基于曼彻斯特编码的图像式角位移测量系统。首先,以M序列伪随机编码为基础,采用曼彻斯特编码方式设计单码道光栅码盘,并采用数字图像传感器设计了光栅码盘上图案的获取光路。然后,基于所使用的编码图案,提出了译码识别算法。其次,为进一步提升位移测量的分辨力提出了边沿定位算法和编码标线边沿图案拟合的亚像素细分算法。最后,对所提出的方法进行实验验证。实验结果表明:在光栅码盘为100 mm时,实现21-bit的分辨力和1.73"的精度。所做的研究,为高可靠性、高性能光电角位移测量技术的研究奠定基础。
太赫兹分子指纹谱是一种非常有潜力的无标记检测方法,在实际应用往往需要对微量甚至痕量样品检测。然而太赫兹波的波长远远大于待测分子的尺寸,导致波与痕量物质之间的相互作用较为微弱,需要额外结构来增强样品对电磁波的吸收。本文在金属基底上构造了倒置的非对称介质光栅结构,该结构利用导模共振(Guided-mode resonance,GMR)和连续域束缚态(Bound state In Continuum,BIC)显著提升了薄膜样品的太赫兹吸收谱。同时仅需测量反射吸收信号就可以得到薄膜增强吸收谱,而且样品涂覆于倒置的介质光栅平坦的背面,易于制备。当该结构用于0.2 μm厚的α-乳糖薄膜时,吸收谱幅度增强达到236倍。该结构为太赫兹波段痕量分析物的检测提供了一种新的方法。
为了解决光子芯片垂直端面光波导桥接过程中,由于光子芯片表面遮挡激光束而引发的光波导形状缺陷问题,基于高数值孔径物镜聚焦光场分布,研究了激光焦点在光子芯片垂直端面不同x方向偏移距离处的光强分布特征。首先,给出了高数值孔径物镜聚焦系统中焦点附近光场分布的解析表达式,以及线偏振光入射时的聚焦光场分量表达式。然后,通过给出的表达式进行数值模拟,研究了激光焦点在距离光子芯片垂直端面不同x方向偏移距离处的焦点光强分布,揭示了焦点光场受到干扰时的强度变化,并绘制出焦点光场强度变化曲线,该曲线与实验中观测到的光波导形状变化趋势相符。最后,基于焦点光强分布曲线,反向推导出了激光功率补偿系数曲线,并将其应用于光波导补偿加工实验中,经过功率补偿加工后,光波导宽度小于4 μm的部分被成功补偿至4 μm,而且形态变得更加笔直,缺陷得到有效修复。数值计算模拟和实验结果表明:该方法成功弥补了由激光功率不足引起的光波导形状缺陷,为光子芯片集成耦合领域的光波导加工制备提供了有效的解决途径。
本文提出一种利用十字线衍射进行涡旋光束OAM检测的方法,其远场分布中与OAM相关的主亮斑包含了入射光束的大部分能量(50%~84%),且不存在干扰检测的次亮斑。相比之下,传统小孔衍射法中的主亮斑能量比例极低,尤其是7阶拓扑荷以上的远场主亮斑中只包含不到1%的入射光束能量,且拓扑荷级数越高,次亮斑的干扰性越强。因此,十字线测量法对弱涡旋光束的检测尤为适用,这对于远程的自由空间光通讯发展具有潜在的重要影响。
具有较高信息容量的多功能超表面受到研究者的广泛关注。本文提出了一种基于太赫兹波段的2位可调谐解耦编码超表面,利用狄拉克半金属(DSM)的可调谐特性设计了一种新的多层结构,在超表面结构中引入几何相位和传播相位,可以有效地调控电磁波。当DSM的费米能级为6 mev时,电磁波由DSM贴片控制,在1.3 THz这一频点工作,当费米能级为80 mev时,电磁波由嵌在DSM薄膜上的金贴片控制,在1.4 THz这一频点工作,这两种模式都可以在左旋圆极化(LCP)波和右旋圆极化(RCP)波激励下实现轨道角动量(OAM)模式不同的涡旋波束的独立控制。这项工作为提高信息容量和无线通信中极化复用技术带来巨大潜力。
精确计时对国民经济发展、科学技术进步以及国防军事安全等领域至关重要。基于双光子跃迁的光学频率标准因其稳定度高、复现性好和易于小型化等显著优势,有望成为实际可用的小型化光频标。本文简要阐述了双光子跃迁的基本原理,介绍了国内外基于双光子跃迁的铷原子光频标的研究现状和进展,最后分析总结得出未来基于双光子跃迁的铷原子光学频率标准的发展趋势为系统小型化、性能指标提升以及集成应用与工程化。
高精度惯性传感器在航天、导航和精密测量等领域具有广泛的应用前景,对其噪声进行高精度评估具有重要意义。本文提出了一种基于Ray Tracing技术的残气噪声仿真方法。首先,基于真实的惯性传感器模型,模拟在轨条件下残余气体在惯性传感器电极笼中的运动,获得残气加速度噪声的统计特性;其次,探究了不同压强和温度对残余气体噪声的影响;最后,分析了敏感轴的残余气体噪声对非敏感轴的间隙大小的依赖关系。仿真结果表明:利用Ray Tracing技术能够模拟追踪残余气体与敏感结构相互作用过程,实现残气加速度噪声在10<sup>-15</sup>量级的高精度仿真。温度和压强对残气加速度噪声水平具有显著影响,且电极笼与测试质量的间隙减小将导致惯性传感器残气噪声功率谱增大。
为满足空间引力波探测皮米级测距精度的需求,本文提出了一种星间光学测距噪声链路指标优化方法。该方法通过对设计参数指标进行优化,在确保星间测距精度的同时提高航天器设计方案的技术可行性。首先,明确优化问题的设计参数及目标函数,结合Sobol敏感性分析有效识别出关键参数。随后,采用非支配排序遗传算法(NSGAII)对优化问题进行求解,从帕累托解集中筛选出符合需求的最优方案。在此基础上,确定各参数的设计指标并初步构建指标树。通过仿真实验验证了方法的可行性,结果表明:遵循本文方法优化噪声链路指标,能够在满足8 pm/√Hz光学测距噪声要求的同时,获得技术可行性最高的设计方案。本研究为后续航天器设计阶段指标体系的构建提供了有效的参考框架与思路,具有良好的适用性,为未来的引力波探测任务奠定了基础。
为了精确评估空间引力波探测任务中检验质量所受到的磁场波动、磁场梯度波动噪声,本文提出了多阶段偏差修正模型MSBCM对检验质量处磁场进行精确重建。在集成学习方法的基础上,本文构建了标准全连接神经网络模块和残差全连接神经网络模块作为多阶段偏差修正模型的弱预测模型,每个弱预测模型都将对前序模型的预测偏差进行修正,最终构成强预测模型,实现对检验质量处磁场的精确重建。在对LISA Pathfinder、eLISA和太极二号空间引力波探测航天器的检验质量处磁场重建实验中,MSBCM方法相比其他方法在敏感轴方向的平均相对误差最小。模拟在轨实验中,MSBCM方法重建检验质量1敏感轴方向的磁场波动和磁场梯度波动加速度噪声的均方根误差分别为1.68×10-17 (m/s2/Hz1/2)和4.00×10-17 (m/s2/Hz1/2)。此外,MSBCM在重建检验质量2敏感轴方向的磁场波动和磁场梯度加速度噪声的均方根误差仅次于距离加权法,分别为1.72×10-16 (m/s2/Hz1/2) 和2.93×10-16 (m/s2/Hz1/2),充分验证了本文提出方法在评估在轨空间引力波探测检验质量处磁场的优势。
作为低低跟踪重力卫星GRACE任务的后续任务,激光干涉重力卫星任务GRACE Follow On双星之一的加速度计载荷在运行一个月后出现了异常,造成了关键科学测量数据的缺失,同时在GRACE服役期最后阶段也出现了类似情况。由此,加速度计数据恢复技术研究对GRACE尤其是GRACE Follow On任务探测目标的实现极为重要。本文提出了一种基于机器学习中的回声状态网络模型来实现加速度计数据恢复与重建的全新方法。基于回声状态网络模型,构建双星之间加速度计数据的映射关系,并通过贝叶斯优化提高网络性能,可实现对缺失加速度计数据的高精度高效率的重建。通过实测数据的实验比对,在重力场探测信号频段,模型预测结果在沿轨道方向和径向两个高灵敏轴可达到(甚至部分频段优于)10^(-8)m∙s-2/√Hz量级水平,在轨道法向低灵敏轴到达10^(-8)m∙s-2/√Hz~10^(-7)m∙s-2/√Hz水平,这一重建精度达到甚至部分优于GRACE官方数据移植精度,可初步应用于重力场反演,实现低低跟踪任务加速度计高精度数据产品恢复。
深度频率调制干涉技术(DFM)是实现空间引力波探测激光干涉测量系统简化的有效方案。当前DFM干涉技术普遍使用kHz级调制,导致激光功率噪声耦合进入系统,增加本底噪声,从而难以满足高精度空间测量的要求。本文提出将DFM调制频率提升至MHz量级以减少激光功率噪声影响,通过深入分析DFM技术原理,采用贝塞尔函数展开、正交解调和推广J1...J4方法设计了DFM干涉相位信号提取方法。基于MHz级信号处理需求,完成了相位测量系统的软硬件构建,并对系统在多种工况下的性能进行测试与评估。测试结果表明:相位测量系统的具有良好的线性度和准确度,且在不同工况下,2 mHz ~ 1 Hz频段内的相位噪声均优于 2π µrad/√Hz,能够满足空间引力波探测的相位测量需求。
检验质量刚度与位移耦合噪声作为残余加速度噪声的重要组成部分,极大影响空间引力波探测性能,需要辨识刚度以验证、优化控制效果,满足噪声抑制需求。针对非同轴检验质量布局,本文提出了一种基于双敏感轴分解的刚度辨识方法。首先,构建检验质量与航天器间的相对动力学模型,并将模型参数沿双敏感轴分解从而剥离航天器加速度扰动和主要的角加速度扰动对在轨辨识的影响。其次,结合星内激光干涉仪、惯性传感器和相关控制环路,设计在轨辨识方案并提出采用递归最小二乘辨识刚度的方法。最后,开展数值仿真实验以验证方法性能。实验结果表明:本文提出的刚度辨识方法可有效辨识检验质量敏感轴刚度,在给定仿真条件下平均绝对误差小于5×10<sup>-9</sup> s<sup>-2</sup>,均方根误差小于1.5×10<sup>-8</sup> s<sup>-2</sup>,最大稳态误差小于2×10<sup>-9</sup> s<sup>-2</sup>,可应用于后续引力波科学探测任务中。
传统Pound-Drever-Hall(PDH)技术使用模拟器件来对激光器进行主动稳频,系统自身体积庞大,控制过程复杂,难以满足空间引力波探测等新型应用场景对稳频系统小型化和自动化的要求。本文在鉴频信号寻峰方面特别设计了一种基于后向差分的自动寻峰算法,可以有效减少稳频过程中的人为因素影响。该方法通过比较连续信号峰的时间宽度来完成信号主峰寻找以及控制状态切换,避免了常规阈值法的固有缺陷。且在此基础上设计搭建了一套基于现场可编程门阵列(FPGA)的数字稳频系统,该系统将稳频伺服反馈控制中的各分立部件全部数字化并集成到单块FPGA内,构建了以压电陶瓷为执行器的快速伺服反馈环路。稳频系统首先利用幅度解调方法在本地得出鉴频信号,再通过所设计的后向差分算法实现自动寻峰,最终在锁频点处开启伺服控制器,并利用增量式数字PID算法成功将商用Nd:YAG激光器频率锁定到精细度为35000的10cm法布里-珀罗腔谐振峰频率上。功能测试实验中系统的锁频时长为半小时,波长计测量数据显示相对频率漂移小于2MHz。该结果验证了所设计的自动寻峰算法有效性,也表明FPGA是一种实现全数字化激光稳频控制的有效途径。
太极计划拟通过扩频通信技术,在干涉链路的基础上,实现星间的激光通信和绝对距离测量。伪随机码的选取是设计实现通信测距系统的第一步,需对不同的伪随机码实现原理、相关性、测距误差函数等方面进行研究对比。本文首先介绍了m序列、Gold序列与Weil序列的生成原理,并采用不同的硬件结构和方法生成相应的伪随机序列,采用GPS的C/A码作为Gold序列与Weil序列进行比较分析选取。在FPGA开发平台实现生成Gold序列和Weil序列的硬件电路,分析不同硬件实现方法的优劣与资源消耗情况。后分别计算Gold序列与Weil序列的相关值及其均方根误差,比较Gold序列与Weil序列的伪随机噪声性能。最后,基于测距的原理和激光干涉后的码间串扰现象,构建用于测距的误差函数,与理想的误差函数作对比,分析用不同伪随机码测距的优劣。数据表明:Weil序列的相关值的旁瓣值范围为-60.27dB至-24.01dB、自相关rms为0.303、互相关rms为0.307,指标均优于Gold序列,消耗的硬件资源为Gold序列的30%,误差函数的偏差值更小。Weil序列更适合于太极计划的星间通信测距需求。
目的:为了实现精密制造中关键部件残余应力的高精度检测,建立了电光调制椭偏应力传感系统。对工程中常见的304不锈钢材料在单轴拉伸应力条件下的椭偏信号响应进行了研究。方法:首先,基于反射椭偏的基本原理,建立了不同光轴方向上椭偏信号与单轴拉伸金属试样寻常折射率和异常折射率的关系。其次,针对不锈钢材料,优化了椭偏应力传感的工作点。通过对比消光点和非零线性工作点的椭偏信号,证明了非零线性条件适用于应力信号的传感。最后,针对不同光轴方向下,应力引起的椭偏信号进行了测量。结果:实验结果表明:针对304不锈钢,系统的最低应力检测限为7.84 kPa,系统的应力检测精度优于7.84 kPa。结论:该系统可用于精密制造中,金属工件高精度应力检测的要求。
针对高功率轴快流CO2激光器射频放电阻抗匹配问题,本文设计了低反射率、高动态匹配范围的阻抗匹配网络,实现了射频激励轴快流CO2激光器在不同放电结构下的射频功率高效利用。基于射频电路阻抗匹配理论,构建了多电极等效电路模型,提出向匹配网络中引入可调高压陶瓷电容的方法,设计了适用于高功率射频激励轴快流CO2激光器的动态L型匹配网络。模拟的动态L型匹配网络可实现向16根放电管注入60 kW射频功率,在总负载阻抗12.81 Ω~49.94 Ω的范围内实现反射率小于1%;并搭建了单管射频放电实验装置,实验测得动态L型匹配网络在4 kW注入功率下反射率小于1%,与仿真结果相符。证明了引入可调高压陶瓷电容的动态L型匹配网络能够实现高动态范围内的阻抗匹配,基本满足高功率射频激励轴快流CO2激光器匹配电路设计要求。
腔衰荡光谱仪器(CRDS)中腔镜微缺陷会导致测量精度下降。本文建立了基于Bobbert Vlieger BRDF 理论的腔镜微缺陷散射模型,分析了微缺陷在不同光源波长、入射角度、缺陷量级、缺陷类型、缺陷密度、基底膜层的散射光特性。腔镜微缺陷散射模型研究表明:微米至亚微米(100 μm~0.1 μm)量级缺陷会降低衰荡吸收精度;针对该量级微缺陷的检测,构建了腔镜微缺陷散射和微缺陷暗场检测的分析模型。CRDS腔镜微缺陷散射光模型的建立与分析,是实现腔镜微缺陷高精度检测和CRDS测量精度恢复的关键技术。
受探测器材料和技术的限制,大尺寸的探测器需要进行拼接和集成才能有效成像。对于拼接式大靶面探测器,拼接平整度直接决定了能量利用率和图像清晰度。同时,由于拼接探测器的调整范围有限,还需要对基准构建进行约束。针对上述问题,本文提出了一种基于通道光谱色散的新型探测器平整度检测方法。通过测量共面调整的干涉条纹,将调整后的残差控制在300 nm以内,验证了整个技术的可行性,并为下一代大口径天文巡天设备和大型目标探测器的发展提供了重要的技术支持。
为了实现超低频段空间引力波的探测,望远镜和光学平台的集成结构需要具有极高的稳定性和可靠性。然而,望远镜悬臂梁式的设计对集成结构的研制提出了重大挑战,特别是依赖于玻璃-金属异质键合的粘接结构。为了应对这些挑战实现望远镜系统的高可靠性研制,本研究对集成结构粘合层进行了设计、分析和实验研究。研究表明,J-133粘合剂在粘接层厚度为0.30 mm、金属基板的表面粗糙度为Ra 0.8时具有最佳性能。这些发现显著提高了光学系统的可靠性,同时最大限度地降低了潜在风险。
由于GaN基紫外VCSEL中的空穴注入层p型掺杂效率较低,导致多量子阱中不能实现有效空穴注入,这极大的降低了紫外VCSEL的光电性能。因此本文设计了一种基于AlGaN的UV VCSEL中使用渐变HIL和EBL结构。该结构能够提高空穴注入效率,使空穴注入层中的空穴浓度增加,也能够使电子阻挡层和空穴注入层界面处的空穴势垒高度降低,从而利于空穴注入。我们使用商用软件PICS3D构建了该结构,并对能带结构以及载流子浓度等进行了模拟和理论分析。通过空穴注入层Al组分渐变引入极化掺杂增加空穴浓度从而提高空穴注入效率。在此基础上电子阻挡层渐变消除了空穴注入层和电子阻挡层界面的空穴突变势垒,使价带更平滑。这提高了多量子阱中的受激辐射复合速率,增强了激光功率。因此,渐变的p型层设计可以提升紫外VCSEL的光电性能。
激光通信是以光波为载体实现信息传输的通信技术,具有高速率、高带宽、小尺寸、抗干扰和保密性好等优势,具备实现空间信息网络高速传输和安全运行的关键能力。本世纪以来,国内外主要研究机构致力于研究激光通信技术在实现组网过程中所需要解决的一系列问题,包括一点对多点同时激光通信、节点内多路信号全光交换与转发、节点动态随遇接入、网络动态拓扑结构设计等关键技术,并开展了众多演示验证实验,部分研究成果已经投入应用。本文在对空间激光通信组网技术进行分析探讨的基础上,概述了国内外的激光通信组网技术的发展现状,重点对卫星星座、卫星中继和航空网络等领域中激光通信组网技术的应用情况和发展现状进行了分析和总结,对国内相关研究技术方案、实验验证情况等进行了综述,最后对激光通信组网技术与应用的发展趋势进行了预测。
太赫兹波具有高穿透性、低能性及指纹谱性等特征,在探测领域被广泛应用,因此设计太赫兹波成像光学系统具有重要的意义和广泛的应用前景。首先,以四块透镜构成的天塞物镜为参考结构,应用近轴光学系统像差理论构建系统像差平衡方程,给出了系统初始结构参数求解函数和方法,再结合光学设计软件对系统像差进一步校正,最终设计了一种用于太赫兹波探测的大孔径光学成像系统。该光学系统由四块同轴折射透镜构成,焦距70 mm,F数为1.4,全视场角为8°,在奈奎斯特频率10 lp/mm处全视场角范围内的调制传递函数(MTF)值均大于0.32,各视场内的弥散斑均方根(RMS)半径均小于艾里斑半径,最后对系统各种公差进行分析和讨论。设计结果表明,本文设计的太赫兹波探测光学成像系统具有孔径大、结构简单且紧凑、成像质量较好且加工性易于实现等特点,满足设计要求,它在太赫兹波段高分辨率探测领域具有重要应用价值。
为了深入了解大气折射的相关进展,本文从其影响、公式发展以及修正原理等方面进行了介绍。针对大气折射的影响,本文根据研究领域涉及的波段不同,将其划分为应用于光学成像、激光传输和光电跟踪等领域的可见光到红外波段,以及应用于雷达测量和卫星探测等领域的无线电波段。这两个波段在实际处理过程中选取的计算公式是不同的。根据折射率公式的发展历史对折射率公式进行介绍,并指出了各公式的局限性。目前对于前者波段公式的最佳选择是Rüeger学者所总结的公式,而对于后者建议选择ITU-R P.453-13建议书中的无线电折射率公式。最后介绍了获取大气折射率的传统计算方法和光学测量方法。传统计算方法是基于大气模式或气象数据建立的模型,通过公式计算或模型拟合来确定特定区域的折射率。这种方法在单一环境或平均范围内具有一定的准确性。而光学测量方法不需要大气模型作为基础,更不用依赖气象参数,测量结果数据实时性高、更具路径代表性,能弥补一些传统方式的弊端,更符合未来的发展趋势。
在非厄密系统中,调节系统的增益或损耗可以使系统状态从PT对称向PT对称破缺转变,转变过程中存在一个特殊的状态转变点,使得系统本征值和本征态同时简并,该点称为奇异点。奇异点结合超构表面产生了许多有趣的光学现象:不对称传输、拓扑相位、非厄密趋肤效应等。然而引入增益的有源超构表面在实验上很难实现,因此利用系统损耗构建虚拟增益的无源超构表面成为非厄密研究的有力武器。本文将从无源非厄密超构表面奇异点的理论模型、研究进展、具体应用和实验设计4个方面进行综述,并对该领域未来的发展方向进行展望。
液晶光学相控阵被广泛应用于激光雷达、激光通信以及激光武器,进行激光光束的扫描控制。为了实现液晶相控阵的最优设计和激光光束高精度控制,本文重点研究了工作波长、像素数、像素尺寸及有效灰度数对光束指向精度的影响规律。首先,根据液晶相位调制原理,仿真分析了周期光栅法和变周期光栅法的有效扫描角度和衍射效率;然后,基于驱动电压灰度等分相位调制量,仿真分析了指向误差随工作波长、像素数、像素尺寸以及有效灰度数的变化规律,推导出多变量普适公式;接着,仿真分析了驱动电压灰度非等分相位调制量时的指向精度,并和等分相位调制量的结果进行对比分析;最后,实验验证了有效灰度数、像素数和指向误差的关系,初步证实了经验公式的有效性。本文的研究结果可为液晶相控阵的设计提供理论依据。
高反光表面复杂的反射性质会使面结构光测量时出现过度曝光和曝光不足的问题。为完整准确地重建被测表面,本文提出一种能根据被测表面反射强度预测曝光时间的多重曝光方法。首先,通过投射一系列不同曝光时间下的均匀灰度图像获得成像系统的相机响应曲线,同时计算得到能反映被测表面反射强度的辐照度图像。然后,通过模糊C均值聚类方法,自适应分割目标不同辐照度区域并获得各区域的中心辐照度,利用相机响应曲线预测不同反射区域的最优曝光时间。最后,结合多重曝光融合算法实现对高反光表面的三维重建。实验结果显示,所提方法能同时重建铝合金表面的强烈反光区域和过暗区域,重建误差小于0.5 mm,最大偏差降低了74.78%,标准偏差降低了48.96%。上述结果表明,所提方法能根据区域反射特性准确预测曝光时间,有效克服区域过曝和区域过暗带来的相位缺失和相位失真问题,完整准确地重建了高反光表面的不同反射区域。
为了满足强激光系统对于合束光栅的宽带、高衍射效率及偏振无关的需求,本文提出了一种具有双层梯形结构的偏振无关合束光栅。首先,基于严格耦合波理论,建立了一种以粒子群优化算法为核心的偏振无关合束光栅设计模型,通过随机生成特征波长实现效率特性寻优。然后,详细分析了单层梯形和双层梯形结构光栅的槽深、占宽比、侧壁倾角等结构参数对光栅衍射效率及带宽的影响。最后,对两种结构光栅的电场增强特性进行分析讨论。结果表明,双层梯形结构偏振无关合束光栅在51 nm(
本文设计了一种高灵敏度温度和压力传感器。该传感结构利用膜片将压力传递给双铰链杠杆结构,采用光纤布拉格光栅(FBG1)作为应变传感器实现压力的测量。此外,双铰链杠杆的引入有效提升了传感器的压力测量灵敏度。仿真和实验测量结果证实,该传感器在0~18 MPa的测量范围内,灵敏度达到453.16 pm/MPa。同时,将另外一支光纤布拉格光栅(FBG2)粘贴在杠杆上,以消除压力测量过程中的温度交叉敏感问题,从而实现温度和压力的同时测量。在25~65 °C测量范围内,温度灵敏度为10.41 pm/ °C。由于光纤传感器的抗电磁干扰特性,该类传感器可用于苛刻环境中的温度和压力测量。
目前中波红外变焦系统在大变倍比,长焦距变焦条件下,难以在极短总长的条件下具备较低敏感度。针对这一问题,本文通过合理分配非球面和衍射面,采用独立组元低敏感度设计方法,设计出一套无需折叠光路,总长仅有337 mm的低敏感度中波红外变焦光学系统。通过降低各个组元的像差从而降低系统公差敏感度。该系统具有30倍大变倍比,可实现30~900 mm的长焦距连续变焦。该系统具有变倍比大、长焦距变焦、极短总长以及低敏感度并且全焦距范围内像质良好等优点,在狭小空间目标识别、跟踪、探测等方面,具有较大的应用优势。
电润湿三液体透镜具有优秀的变焦性能,但其结构复杂度和设计难度较大,因此,本文提出了一种基于联合仿真的电润湿三液体透镜结构参数优选方法。在设计某三液体透镜时,利用Comsol和Zemax软件建立了不同结构参数下的三液体透镜仿真模型,得到了其在不同电压下的焦距,分析了高度和锥度对变焦范围和初始焦距的影响,确定了变焦范围最大且初始焦距最长的一组结构参数。为了验证该方法的可靠性,制备了不同高度和锥度的三液体透镜模型,并进行变焦实验。仿真与实验结果表明:三液体透镜的初始焦距与高度和锥度正相关;变焦范围与锥度正相关,但高度为主要影响因素;当高度为12 mm,锥度为20°时,透镜变焦范围最大,初始焦距最长。当锥度小于15°时,仿真与实验结果的吻合度较高。
针对现有镜头畸变参数估计方法存在精度低、易陷入局部最优解的问题,提出了一种基于改进天鹰优化算法的折反射全景相机镜头畸变参数方法。首先,通过融合混沌映射、自适应调节策略和通讯交流策略,增强了天鹰优化算法的寻优能力,解决了其收敛速度慢且容易陷入局部最优解的问题;其次,通过空间中直线对应的畸变边缘和单参数除法模型推导并确定畸变参数分布范围;然后,构建包含畸变参数的优化目标函数;最后,采用改进的天鹰优化算法对优化目标函数寻优求得最佳畸变参数。通过对标准图库图像和全景图像的校正结果进行分析,本文提出的方法估计的主点误差在0.5 pixel以内,径向畸变系数误差在2.5%以内,能够有效估计镜头畸变参数并实现全景图像畸变校正。本文方法提高了视觉导航系统在环境感知任务下的图像质量,在工程应用中具有潜在价值。
拼接弧线电机凭借其高转矩比和低速稳定运行等优点,为大口径天文望远镜观测提供了高性能驱动技术支持。电机运行过程中存在的如参数畸变、谐波等其他内外部干扰,都对提高电机性能提出了挑战。因此,本文提出一种基于新型趋近律的积分滑模控制器,同时结合扩张状态观测器与负载观测器的混合控制策略,旨在优化传统滑模控制并增强系统的抗干扰能力。传统趋近律参数较为繁杂且不能很好地抑制抖振,新型的趋近律简化了参数,有效克服了系统抖振。其次,采用扩张状态观测器对反馈转速进行估计,然后结合q轴电流信息和估计出的转速数据作为负载转矩观测器输入,进一步提高了负载观测性能,并将负载观测值转换为电流进行前馈补偿,用以提高电机的抗干扰性能。仿真和实验结果表明:所提出的双观测器方法能够有效观测电机的转速和负载值,显著增强了电机的抗负载扰动能力;同时,采用新型滑模速度控制器降低了电机转速超调量,并在一定程度上抑制了滑模抖振,为弧线电机在大口径天文望远镜的高精度观测应用提供了理论和实验支持。
为了实现对短距光纤数据通信系统接收端非线性损伤的低复杂度均衡,提出了一种基于全连接神经网络的接收端均衡算法。这是一种引入判决反馈结构的判决反馈神经网络。非线性畸变是由线性工作区与实验系统不匹配的光电探测器引入的,在此基础上实现了基于C波段直接调制激光器的56 Gbit/s PAM4信号的20 km传输验证实验,并对判决反馈神经网络和其他均衡方案的均衡性能进行了对比实验。实验结果表明,相比全连接神经网络,改进方案在传输距离为20 km时灵敏度提升2 dB。改进方案可以很好地均衡光电器件的非线性,且计算复杂度更低,具有很好的应用意义。
快速反射镜的工作环境一般比较恶劣,容易受到振动冲击、温度变化等影响,导致故障。本文针对最为普遍的恒偏差故障,提出了一种基于线性矩阵不等式(linear matrix inequality, LMI)的故障观测器设计方法,旨在提高故障检测的可靠性,增强快速反射镜的稳定性以及抗干扰能力。首先,采用基于汉克尔(Hankel)矩阵的模型辨识方法得到了考虑耦合效应的两轴快速反射镜模型。然后,建立了快速反射镜系统的故障模型,采用基于LMI的方法对快速反射镜的故障观测器进行设计。最后,通过仿真与实验对该方法进行验证。结果表明,当快速反射镜的两轴发生执行器和传感器恒偏差故障时,基于黎卡提(Riccati)方程的故障观测器只能检测出其中一个轴的故障,基于LMI的故障观测器对
红外数据作为信息化数据库的重要组成部分,在夜视侦察、武器制导、远程预警等方面具有广泛应用。红外辐射特性测量系统在环境温度变化时会产生温漂,从而导致目标的红外反演精度受到较大影响。针对该问题,本文提出一种基于环境温度自适应修正的内外联合定标方法。通过自适应插值的方式对环境温度变化的影响进行修正。以高精度面源黑体作为目标进行辐射反演测量试验。实验结果表明:最小误差为6.82%、最大误差为10.21%。同时对水上动态目标开展辐射特性反演实验,得到高置信度的实测目标辐射特性数据。通过黑体以及水上动态目标的测量试验可以得到:本方法可以在海洋气候复杂环境下实现环境温度变化对辐射反演精度的影响修正。验证了所提出的定标算法的有效性,同时可以基于修正参数进行红外系统环境温度敏感性的有效评估测试。
涡旋光束阵列在自由空间光通信领域有很大的应用价值。本文采用多相位屏模拟大气湍流,研究了径向高斯涡旋光束阵列在大气湍流环境中传输的光场演化过程和轴上闪烁特性,分析了不同初始光束参数对径向高斯涡旋光束阵列的轴上闪烁指数的影响,并将其与单束高斯涡旋光束的轴上闪烁指数进行对比。研究结果表明:在弱湍流区域,rytov指数小于0.5时,单束高斯涡旋光束的轴上闪烁指数一直保持在小于1的数值区域,远小于径向高斯涡旋光束的轴上闪烁指数;而在中等强度湍流区域,径向高斯涡旋光束阵列的轴上闪烁指数小于单束高斯涡旋光束的轴上闪烁指数。此外,还发现径向高斯涡旋光束阵列的轴上闪烁指数会随着轨道角动量值的减小和径向阵列半径的增大而减小。研究结果对于大气湍流环境下的涡旋光通信具有一定的理论意义和应用价值。
为提升低轨卫星与地面站间激光链路的通信质量,商业地面站内望远镜配备的大口径主镜需适应户外环境中恶劣的温度条件。针对某通光口径
粒化是柑橘类水果常见的一种内部病害,患有该病害的水果外部特征并不明显,难以从外观上直接识别出来。本文使用微型激光多普勒测振仪(micro-LDV)和共振喇叭搭建了一套声学振动实验装置,将其用于采集“爱媛38号”果冻橙的振动响应信号。然后,将一维的振动响应信号转换为振动多域图像,并构建了一个Resnet-Transformer(ResT)网络,用于提取振动多域图像中的深层特征,以识别果冻橙粒化病。本文中,使用振动多域图像分别训练ResT、Resnet50和Vision Transformer(ViT)模型,并将ResT的性能与Resnet50和ViT进行比较。最后,使用振动多域图像纹理特征或振动频谱特征训练偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型,并与ResT模型进行性能对比。结果表明,使用振动多域图像训练的ResT模型可以精准识别果冻橙粒化病并且检测准确率为98.61%,模型的F1为0.986、精确率为0.986、召回率为0.986。由上述结果可知,提出的方法可在简单、快速、低成本的前提下准确识别粒化果冻橙。
为了提高压电定位系统(Piezo-positioning system)的控制性能,对迟滞特性产生的影响及其补偿控制方法进行了研究。利用Hammerstein模型表征压电陶瓷定位器的动态迟滞非线性特性,分别以Prandtl-Ishlinskii(P-I)模型和Hankel矩阵系统辨识法求得的模型表示Hammerstein模型的静态非线性部分和动态线性部分。此模型对于200 Hz以内的典型输入频率具有较好的泛化能力。在此基础上,还提出了基于P-I逆模型与积分增广的滑模逆补偿跟踪控制策略。实验结果表明,相较于PID逆补偿控制和无逆补偿的滑模控制,滑模逆补偿控制具有更加理想的阶跃响应,无超调且调节时间仅为6.2 ms,在频域内系统闭环跟踪带宽达到119.9 Hz,且扰动抑制带宽达到86.2 Hz。所提控制策略实现了迟滞非线性的有效补偿,提高了压电定位系统的跟踪精度与抗扰性能。
激光二极管由于载流子泄漏严重,在波导区域发生非辐射复合,进而降低了输出功率和电光转换效率。本文设计了一种新型外延结构,通过在有源区两侧势垒和波导层之间分别插入n-Ga0.55In0.45P和p-GaAs0.6P0.4材料,调控能带结构,增大了阻挡载流子泄漏的势垒高度,抑制了载流子泄漏。研究结果表明,相较于传统结构器件,泄漏电流密度降低了87.71%。在25 °C注入电流密度为5 A/cm2时,新型外延结构的非辐射复合电流密度降低至37.411 A/cm2,输出功率达12.80 W,电光转换效率达78.24%。此外,在5 °C~65 °C温度变化范围内,中心波长的温漂系数为0.206 nm/°C,阈值电流随温度变化的拟合直线的斜率为
长周期光纤光栅因具有体积小、耐腐蚀、抗电磁干扰和灵敏度高等优点,广泛应用于生物医学、电力工业以及航空航天等领域。本文研制了一种基于周期微通道的长周期光纤光栅传感器。首先通过飞秒激光微加工在单模光纤的包层中刻蚀出一系列直线结构,然后通过湿法腐蚀技术对激光改性区域进行选择性腐蚀以获得周期性微通道结构,最后在通道中填充聚二甲基硅氧烷(PDMS)以改善光谱质量。实验结果表明,该传感器可以进行温度、应力、折射率和弯曲等传感参数测量,具有良好的传感灵敏度。温度灵敏度为−55.19 pm/°C,应变灵敏度为−3.19 pm/με,最大折射率灵敏度为540.28 nm/RIU,弯曲灵敏度为2.65 dB/m−1,且均表现出良好的线性响应。该传感器在精密测量和传感领域有良好的应用前景。
- 2024 6期 5期 4期 3期 2期 1期
- 2023 6期 5期 4期 3期 2期 1期
- 2022 6期 5期 4期 3期 2期 1期
- 2021 6期 5期 4期 3期 2期 1期
- 2020 6期 5期 4期 3期 2期 1期
- 2019 6期 5期 4期 3期 2期 1期
- 2018 6期 5期 4期 3期 2期 1期
- 2017 6期 5期 4期 3期 2期 1期
- 2016 6期 5期 4期 3期 2期 1期
- 2015 6期 5期 4期 3期 2期 1期
- 2014 6期 5期 4期 3期 2期 1期
- 2013 6期 5期 4期 3期 2期 1期
- 2012 6期 5期 4期 3期 2期 1期
- 2011 6期 5期 4期 3期 2期 1期
- 2010 6期 5期 4期 3期 2期 1期
- 2009 6期 5期 4期 3期 2期 1期
- 2008 1期