Volume 13 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
REN Jian-ying, SUN Hua-yan, ZHAO Yan-zhong, ZHANG Lai-xian. Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere[J]. Chinese Optics, 2020, 13(4): 728-736. doi: 10.37188/CO.2019-0194
Citation: REN Jian-ying, SUN Hua-yan, ZHAO Yan-zhong, ZHANG Lai-xian. Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere[J]. Chinese Optics, 2020, 13(4): 728-736. doi: 10.37188/CO.2019-0194

Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere

Funds:  Supported by the Young Scientists Fund of the National Natural Science Foundation of China ( No. 61805283)
More Information
  • Corresponding author: rjyfly@126.com
  • Received Date: 25 Sep 2019
  • Rev Recd Date: 21 Nov 2019
  • Publish Date: 01 Aug 2020
  • In this paper, the cross-spectral density function of target reflected light in laser detection is obtained by using generalized Huygens-Fresnel principle and Goodman target scattering theory. On the basis of above, the expression of intensity distribution and spatial coherence length of target reflected light is derived. The influence of different light source and target reflected light parameters on the intensity distribution and coherent length of the target reflected light is simulated by using the expressions obtained in this paper under turbulent atmospheric conditions. The results show that the coherence length of the light source has little effect on the normalized light intensity distribution; the coherence length of the received light is smaller with a larger beam waist radius and reflected light radius, and the coherence length increases at a slower rate as the transmission distance increases. In the process of weak turbulent atmospheric transmission, the influence of light source parameters on the received light is much stronger. The larger the beam waist radius, the smaller the received light intensity and coherence length value. During strong turbulent atmospheric transmission, the influence of atmospheric turbulence on the received light is dominant.

     

  • loading
  • [1]
    LU W, LIU L R, SUN J F, et al. Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence[J]. Optics Communications, 2007, 271(1): 1-8. doi: 10.1016/j.optcom.2006.09.058
    [2]
    周鑫, 姜鹏, 孙剑峰, 等. 基于点目标大气闪烁的目标回波分布研究[J]. 红外与激光工程,2017,46(S1):74-81.

    ZHOU X, JIANG P, SUN J F, et al. Investigation on the distribution of target echo based on point target atmospheric scintillation[J]. Infrared and Laser Engineering, 2017, 46(S1): 74-81. (in Chinese)
    [3]
    COLLETT E, WOLF E. Beams generated by Gaussian quasi-homogeneous sources[J]. Optics Communications, 1980, 32(1): 27-31. doi: 10.1016/0030-4018(80)90307-7
    [4]
    KOROTKOVA O, ANDREWS L C, PHILLIPS R L. Lidar model for a rough-surface target: method of partial coherence[J]. Proceedings of SPIE, 2004, 5237: 49-60. doi: 10.1117/12.515086
    [5]
    GOODMAN J W. Statistical properties of laser speckle patterns[M]. DAINTY J C. Laser Speckle and Related Phenomena. Berlin, Heidelberg: Springer, 1975.
    [6]
    KOROTKOVA O, CAI Y, WATSON E. Stochastic electromagnetic beams for LIDAR systems operating through turbulent atmosphere[J]. Applied Physics B, 2009, 94(4): 681-690. doi: 10.1007/s00340-009-3404-4
    [7]
    RICKLIN J C, DAVIDSON F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802. doi: 10.1364/JOSAA.19.001794
    [8]
    RICKLIN J C, DAVIDSON F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866. doi: 10.1364/JOSAA.20.000856
    [9]
    WU J, BOARDMAN A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence[J]. Journal of Modern Optics, 1991, 38(7): 1355-1363. doi: 10.1080/09500349114551521
    [10]
    FRIBERG A T, SUDOL R J. Propagation parameters of Gaussian Schell-model beams[J]. Optics Communications, 1982, 41(6): 383-387. doi: 10.1016/0030-4018(82)90161-4
    [11]
    LI M N, TAN L Y, MA J, et al. Performance analysis of a free-space laser communication system with a Gaussian Schell model[J]. Journal of Modern Optics, 2015, 62(19): 1608-1615. doi: 10.1080/09500340.2015.1054907
    [12]
    柯熙政, 王婉婷. 部分相干光在大气湍流中的光束扩展及角扩展[J]. 红外与激光工程,2015,44(9):2726-2733. doi: 10.3969/j.issn.1007-2276.2015.09.032

    KE X ZH, WANG W T. Expansion and angular spread of partially coherent beam propagating in atmospheric turbulence[J]. Infrared and Laser Engineering, 2015, 44(9): 2726-2733. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.09.032
    [13]
    WU ZH S, LI Y Q. Scattering of a partially coherent Gaussian-Schell beam from a diffuse target in slant atmospheric turbulence[J]. Journal of the Optical Society of America A, 2011, 28(7): 1531-1539. doi: 10.1364/JOSAA.28.001531
    [14]
    李成强, 张合勇, 王挺峰, 等. 高斯-谢尔模光束在大气湍流中传输的相干特性研究[J]. 物理学报,2013,62(22):224203. doi: 10.7498/aps.62.224203

    LI CH Q, ZHANG H Y, WANG T F, et al. Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence[J]. Acta Physica Sinica, 2013, 62(22): 224203. (in Chinese) doi: 10.7498/aps.62.224203
    [15]
    LI M N, TAN L Y, MA J, et al. Statistical distribution of the optical intensity obtained using a Gaussian Schell model for space-to-ground link laser communications[J]. Journal of Modern Optics, 2016, 63(10): 921-931. doi: 10.1080/09500340.2015.1111452
    [16]
    向宁静, 王明军, 王太荣. 部分相干高斯-谢尔光束在大气湍流中的平均强度与展宽[J]. 激光杂志,2012,33(5):4-6. doi: 10.3969/j.issn.0253-2743.2012.05.003

    XIANG N J, WANG M J, WANG T R. Average intensity and spreading of a partially coherent Gaussian Schell-model beam propagation through atmospheric turbulence[J]. Laser Journal, 2012, 33(5): 4-6. (in Chinese) doi: 10.3969/j.issn.0253-2743.2012.05.003
    [17]
    埃米尔·沃尔夫. 光的相干与偏振理论导论[M]. 蒲继雄, 译. 北京: 北京大学出版社, 2014.

    WOLF E. Introduction to the Theory of Coherence and Polarization of light[M]. PU J X, trans. Beijing: Beijing University Press, 2014. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(2238) PDF downloads(85) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return