Citation: | GU Yan-hong, ZUO Zhao-lu, ZHANG Zhen-zhen, SHI Chao-yi, GAO Xian-he, LU Jun. Algorithmic study of total petroleum hydrocarbons in contaminated soil by three-dimensional excitation-emission matrix fluorescence spectroscopy[J]. Chinese Optics, 2020, 13(4): 852-864. doi: 10.37188/CO.2019-0216 |
[1] |
PIETROSKI J P, WHITE J R, DELAUNE R D, et al. Fresh and weathered crude oil effects on potential denitrification rates of coastal marsh soil[J]. Chemosphere, 2015, 134: 120-126. doi: 10.1016/j.chemosphere.2015.03.056
|
[2] |
GAO Y, DAI L K, ZHU H D, et al. Quantitative analysis of main components of natural gas based on raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 67-76. (in Chinese)
|
[3] |
CAO J J, SUN Q R, LI W H, et al. Fluorescence properties of magnoflorine and its application in analysis of traditional chinese medicine[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 950-956. (in Chinese)
|
[4] |
RAMADASS K, MEGHARAJ M, VENKATESWARLU K, et al. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation[J]. Science of the Total Environment, 2018, 636: 968-974. doi: 10.1016/j.scitotenv.2018.04.379
|
[5] |
SIM A, CHO Y, KIM D, et al. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry[J]. Fuel, 2015, 140: 717-723. doi: 10.1016/j.fuel.2014.10.019
|
[6] |
POLLO B J, ALEXANDRINO G L, AUGUSTO F, et al. The impact of comprehensive two-dimensional gas chromatography on oil & gas analysis: Recent advances and applications in petroleum industry[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 202-217. doi: 10.1016/j.trac.2018.05.007
|
[7] |
SHIMAMOTO G G, TUBINO M. Alternative methods to quantify biodiesel in standard diesel-biodiesel blends and samples adulterated with vegetable oil through UV–Visible spectroscopy[J]. Fuel, 2016, 186: 199-203. doi: 10.1016/j.fuel.2016.08.076
|
[8] |
FORINA M, OLIVERI P, BAGNASCO L, et al. Artificial nose, NIR and UV–visible spectroscopy for the characterisation of the PDO Chianti Classico olive oil[J]. Talanta, 2015, 144: 1070-1078. doi: 10.1016/j.talanta.2015.07.067
|
[9] |
SONG B R, ZHEN M N, LIU X M, et al. Real-time fluorescence quantitative polymerase chain reaction for anaerobic degradation genes masD and bamA in petroleum hyadrocarbons[J]. Chinese Journal of Analytical Chemistry, 2019, 47(2): 207-213. (in Chinese)
|
[10] |
LI B N, WANG H X, ZHAO Q J, et al. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: A comparative study[J]. Food Chemistry, 2015, 181: 25-30. doi: 10.1016/j.foodchem.2015.02.079
|
[11] |
DENG W, QING X D, CHEN M, et al. Chemometrics-assisted three-dimensional room temperature phosphorescence for apid quantitative determination of acenaphthene contents in air-pollution samples[J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1438-1445. (in Chinese)
|
[12] |
XU J L, WANG J, WANG C, et al. Effective oxidation of crude oil in soils by consuming less hydroxyl radical with target iron[J]. Chemical Engineering Journal, 2020, 380: 122414. doi: 10.1016/j.cej.2019.122414
|
[13] |
LEMKE M, FERNÁNDEZ-TRUJILLO R, LÖHMANNSRÖBENC H G. In-situ LIF analysis of biological and petroleum-based hydraulic oils on soil[J]. Sensors, 2005, 5(1): 61-69. doi: 10.3390/s5010061
|
[14] |
SINSKI J F, COMPTON B S, PERKINS B S, et al. Utilizing three-dimensional fluorescence's red-shift cascade effect to monitor mycobacterium PRY-1 degradation of aged petroleum[J]. Applied Spectroscopy, 2004, 58(1): 91-95. doi: 10.1366/000370204322729513
|
[15] |
FERRETTO N, TEDETTI M, GUIGUE C, et al. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis[J]. Chemosphere, 2014, 107: 344-353. doi: 10.1016/j.chemosphere.2013.12.087
|
[16] |
YIN J, LIU J Z, CHEN T, et al. Influence of melanoidins on acidogenic fermentation of food waste to produce volatility fatty acids[J]. Bioresource Technology, 2019, 284: 121-127. doi: 10.1016/j.biortech.2019.03.078
|
[17] |
MA ZH F, YANG Y, LIAN X Y, et al. Identification of nitrate sources in groundwater using a stable isotope and 3DEEM in a landfill in Northeast China[J]. Science of the Total Environment, 2016, 563-564: 593-599. doi: 10.1016/j.scitotenv.2016.04.117
|
[18] |
CHRISTENSEN J H, HANSEN A B, MORTENSEN J, et al. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis[J]. Analytical Chemistry, 2005, 77(7): 2210-2217. doi: 10.1021/ac048213k
|
[19] |
LIU Y, WANG T T, YANG J. Evaluating the quality of mine water using hierarchical fuzzy theory and fluorescence regional integration[J]. Mine Water and the Environment, 2019, 38(2): 243-251. doi: 10.1007/s10230-018-0567-4
|
[20] |
ZHANG SH R, WU H L, CHEN Y, et al. An investigation on hydrogen bonding between 3-methylindole and ethanol using trilinear decomposition of fluorescence excitation–emission matrices[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 121: 9-14. doi: 10.1016/j.chemolab.2012.11.014
|