Volume 13 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
GAO Jing-jing, JIAO Chang-jun, HUANG Shen, ZHANG Zhen, BI Yong. Optimal design of a 2.7 m standard spherical inspection mirror support[J]. Chinese Optics, 2020, 13(4): 805-813. doi: 10.37188/CO.2019-0225
Citation: GAO Jing-jing, JIAO Chang-jun, HUANG Shen, ZHANG Zhen, BI Yong. Optimal design of a 2.7 m standard spherical inspection mirror support[J]. Chinese Optics, 2020, 13(4): 805-813. doi: 10.37188/CO.2019-0225

Optimal design of a 2.7 m standard spherical inspection mirror support

Funds:  Natural Science Foundation of Jiangsu Province (No.BK20181125)
More Information
  • Corresponding author: 178026064@qq.com
  • Received Date: 25 Nov 2019
  • Rev Recd Date: 04 Dec 2019
  • Publish Date: 01 Aug 2020
  • Aiming at the problem that the decrease of inspection accuracy caused by an increase in the diameter of a spherical inspection mirror, the weight support parameters of the 2.7-meter standard spherical mirror are optimized and the structural design of its adjustment frame and support system is implemented. Firstly, the 54-point equal-force support ring is optimized for the mirror body using a finite element and genetic algorithm. In order to increase the rigidity of the mirror body when increasing the nesting hole, the bottom support force and the side support force of each ring are optimized separately and the influence of support radius and support force error on the support deformation is statistically analyzed. Finally, based on the analysis results, a structural frame of the standard inspection mirror and a support system are designed. The analysis results show that after optimization of the 54-point support position of the standard spherical mirror, the bottom support force and the side support force of each ring and under the condition that the spherical mirror support deformation is less than 1/115λ(λ=632.8 nm), the bottom support position is disturbed by ±2 mm, the side support position is disturbed by ±0.6 mm, and the support force disturbance is ±3 N, the support deformation is less than 1/70λ, which shows little deterioration. This meets the requirements of standard spherical mirror support.

     

  • loading
  • [1]
    王忠善.天基大口径单体反射镜结构优化及其支撑技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019.

    WANG ZH SH. Research on structure optimization of large aperture monolithic space-based mirror and its mounting technology[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
    [2]
    郭疆, 朱磊, 赵继, 等. 大口径空间反射镜大容差支撑结构设计与优化[J]. 光学 精密工程,2019,27(5):1138-1147. doi: 10.3788/OPE.20192705.1138

    GUO J, ZHU L, ZHAO J, et al. Design and optimize of high tolerance support structure for large aperture space mirror[J]. Optics and Precision Engineering, 2019, 27(5): 1138-1147. (in Chinese) doi: 10.3788/OPE.20192705.1138
    [3]
    范磊. 2m级地基望远镜SiC主镜轻量化设计及支撑技术研究[D]. 长春: 中科院长春光学精密机械与物理研究所, 2013.

    FAN L. Research on the lightweight design and support of the 2m-SiC primary mirror for ground-based telescope[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013. (in Chinese)
    [4]
    YODER JR P R. Opto-Mechanical Systems Design[M]. 3rd ed. Boca Raton: CRC Press, 2005.
    [5]
    董得义, 庞新源, 张学军, 等. 空间大口径单体反射镜计量卸荷支撑研制中的关键技术[J]. 光学 精密工程,2019,27(10):2165-2179. doi: 10.3788/OPE.20192710.2165

    DONG D Y, PANG X Y, ZHANG X J, et al. Key technology in developing of metrology mount for large aperture monolithic space-based mirror[J]. Optics and Precision Engineering, 2019, 27(10): 2165-2179. (in Chinese) doi: 10.3788/OPE.20192710.2165
    [6]
    胡企千. 望远镜技术与天文测天[M]. 南京: 东南大学出版社, 2014.

    HU Q Q. Telescope Technology and Astrometry[M]. Nanjing: Southeast University Press, 2014. (in Chinese)
    [7]
    TSAI L W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators[M]. New York: Wiley, 1999.
    [8]
    王槐, 代霜. 大型望远镜轴系支撑结构的发展现状与分析[J]. 光机电信息,2011,28(3):17-27. doi: 10.3788/OMEI20112803.0017

    WANG H, DAI SH. Development actuality and analysis of large alt-azimuth telescope shafting supporting structure[J]. OME Information, 2011, 28(3): 17-27. (in Chinese) doi: 10.3788/OMEI20112803.0017
    [9]
    王克军.天基大口径反射镜轻量化设计及复合支撑技术研究[D]. 长春: 中科院长春光学精密机械与物理研究所, 2016.

    WANG K J. Research on the lightweight design and compound support of the large-aperture mirror for space-based telescope[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
    [10]
    范磊, 张景旭, 邵亮, 等. 采用液压whiffle-tree的大口径主镜轴向支撑[J]. 红外与激光工程,2013,42(8):2126-2131. doi: 10.3969/j.issn.1007-2276.2013.08.035

    FAN L, ZHANG J X, SHAO L, et al. Axial support for large aperture primary mirror based on hydraulic Whiffle-tree[J]. Infrared and Laser Engineering, 2013, 42(8): 2126-2131. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.08.035
    [11]
    李钰鹏, 王智, 沙巍, 等. Bipod反射镜支撑结构的柔度计算及分析[J]. 光学 精密工程,2018,26(7):1691-1697. doi: 10.3788/OPE.20182607.1691

    LI Y P, WANG ZH, SHA W, et al. Flexibility calculation and analysis of Bipod reflector support structure[J]. Optics and Precision Engineering, 2018, 26(7): 1691-1697. (in Chinese) doi: 10.3788/OPE.20182607.1691
    [12]
    王富国, 乔兵, 张景旭. 2m SiC反射镜柔性被动支撑系统[J]. 光学 精密工程,2017,25(10):2591-2598. doi: 10.3788/OPE.20172510.2591

    WANG F G, QIAO B, ZHANG J X. Flexible passive support system for 2 m SiC reflective mirror[J]. Optics and Precision Engineering, 2017, 25(10): 2591-2598. (in Chinese) doi: 10.3788/OPE.20172510.2591
    [13]
    胡海飞, 赵宏伟, 刘振宇, 等. 4 m口径SiC反射镜原位检测用静压支撑系统[J]. 光学 精密工程,2017,25(10):2607-2613. doi: 10.3788/OPE.20172510.2607

    HU H F, ZHAO H W, LIU ZH Y, et al. Hydrostatic support system for in-situ optical testing of a 4 m aperture SiC mirror[J]. Optics and Precision Engineering, 2017, 25(10): 2607-2613. (in Chinese) doi: 10.3788/OPE.20172510.2607
    [14]
    田富湘, 何欣. 空间光学遥感器光学镜面有限元分析结果的后处理[J]. 红外,2014,35(9):19-22. doi: 10.3969/j.issn.1672-8785.2014.09.005

    TIAN F X, HE X. Post−processing of FEA results of optical mirrors for space remote sensor[J]. Infrared, 2014, 35(9): 19-22. (in Chinese) doi: 10.3969/j.issn.1672-8785.2014.09.005
    [15]
    张军强, 董得义, 吴清文, 等. 光学遥感器镜面面形误差及刚体位移处理方法[J]. 仪器仪表学报,2011,32(6):242-247.

    ZHANG J Q, DONG D Y, WU Q W, et al. Treatment of surface figure error and rigid body motion for mirror/lens in optical remote sensor[J]. Chinese Journal of Scientific Instrument, 2011, 32(6): 242-247. (in Chinese)
    [16]
    胡海飞, 罗霄, 辛宏伟, 等. 超大口径光学制造均力支撑布局优化[J]. 光学学报,2014,34(4):0422003. doi: 10.3788/AOS201434.0422003

    HU H F, LUO X, XIN H W, et al. Layout optimization of equal-force supports for ultra-large optical fabrication[J]. Acta Optica Sinica, 2014, 34(4): 0422003. (in Chinese) doi: 10.3788/AOS201434.0422003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)

    Article views(1660) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return