Volume 13 Issue 4
Aug.  2020
Turn off MathJax
Article Contents
SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241
Citation: SUN Jun-jie, CHEN Fei, HE Yang, CONG Chun-xiao, QU Jia-yi, JI Yan-hui, BAO He. Application of emerging transition metal dichalcogenides in ultrafast lasers[J]. Chinese Optics, 2020, 13(4): 647-659. doi: 10.37188/CO.2019-0241

Application of emerging transition metal dichalcogenides in ultrafast lasers

doi: 10.37188/CO.2019-0241
Funds:  Supported by National Key R&D Program of China (No. 2016YFB0500100; No. 2018YFE0203203); National Natural Science Foundation of China (No. 61975203); Youth Innovation Promotion Association of CAS (No. 2017259); Civil Aerospace Pre-research Project (No. D040101)
More Information
  • Corresponding author: feichenny@126.com
  • Received Date: 17 Dec 2019
  • Rev Recd Date: 07 Feb 2020
  • Publish Date: 01 Aug 2020
  • Ultrafast laser technology is one of the most active research frontiers in lasers, physics and information science. It is widely applied in industrial processing, biomedicine, lidar and other fields. Because of their unique physical structure and excellent photoelectric properties, two-dimensional materials have a wide operating band, controllable modulation depth and short recovery time when they are employed as saturable absorbers in ultrafast lasers. Among them, transition metal dichalcogenides have become a focus of research because their band-gap is continuously adjustable. In this paper, we introduce the characteristics of transition metal dichalcogenides and the fabrication methods of saturable absorber devices. The research progress of ultrafast lasers based on emerging transition metal dichalcogenides is reviewed, and the development trend is highlighted.

     

  • loading
  • [1]
    SIBBETT W, LAGATSKY A A, BROWN C T A. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7): 6989-7001. doi: 10.1364/OE.20.006989
    [2]
    YE J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155. doi: 10.1364/OL.29.001153
    [3]
    岱钦, 毛有明, 吴凯旋, 等. 脉冲激光测距中高速精密时间间隔测量研究[J]. 液晶与显示,2015,30(1):83-88. doi: 10.3788/YJYXS20153001.0083

    DAI Q, MAO Y M, WU K X, et al. High speed and high precision time-interval measurement system in pulsed laser ranging[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 83-88. (in Chinese) doi: 10.3788/YJYXS20153001.0083
    [4]
    高慧, 赵佳宇, 刘伟伟. 超快激光成丝现象的多丝控制[J]. 光学 精密工程,2013,21(3):698-607.

    GAO H, ZHAO J Y, LIU W W. Control of multiple filamentation induced by ultrafast laser pulse[J]. Optics and Precision Engineering, 2013, 21(3): 698-607. (in Chinese)
    [5]
    TRÄGER F. Handbook of Lasers and Optics[M]. 2nd ed. New York: Springer, 2012.
    [6]
    姜可, 谢冀江, 杨贵龙, 等. GaSe晶体的双光子吸收对太赫兹输出的影响[J]. 发光学报,2015,36(3):361-365. doi: 10.3788/fgxb20153603.0361

    JIANG K, XIE J J, YANG G L, et al. Two-photon absorption attenuated THz generation in GaSe[J]. Chinese Journal of Luminescence, 2015, 36(3): 361-365. (in Chinese) doi: 10.3788/fgxb20153603.0361
    [7]
    TANTER M, TOUBOUL D, GENNISSON J L, et al. High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(12): 1881-1893. doi: 10.1109/TMI.2009.2021471
    [8]
    CHOU S Y, KEIMEL C, GU J. Ultrafast and direct imprint of nanostructures in silicon[J]. Nature, 2002, 417(6891): 835-837. doi: 10.1038/nature00792
    [9]
    KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. doi: 10.1038/nature01938
    [10]
    李景照, 陈振强, 朱思祁. 基于Yb: YAG/Cr4+: YAG/YAG键合晶体的被动调Q激光器[J]. 光学 精密工程,2018,26(1):55-61. doi: 10.3788/OPE.20182601.0055

    LI J ZH, CHEN ZH Q, ZHU S Q. Passively Q-switched laser with a Yb: YAG/Cr4+: YAG/YAG composite crystal[J]. Optics and Precision Engineering, 2018, 26(1): 55-61. (in Chinese) doi: 10.3788/OPE.20182601.0055
    [11]
    程秀凤, 陈丽娟, 韩树娟, 等. LD端面泵浦Nd: LiGd(MoO4)2晶体的主动调Q脉冲激光特性[J]. 光学 精密工程,2013,21(4):836-840.

    CHENG X F, CHEN L J, HAN SH J, et al. Actively Q-switched pulse laser from LD end-pumped Nd: LiGd(MoO4)2 crystals[J]. Optics and Precision Engineering, 2013, 21(4): 836-840. (in Chinese)
    [12]
    王加贤, 庄鑫巍. 基于半导体可饱和吸收镜实现闪光灯抽运Nd: YAG激光器的被动调Q与锁模[J]. 光学 精密工程,2006,14(4):584-588.

    WANG J X, ZHUANG X W. Passive Q-switching and mode-locking in a flashlamp-pumped Nd: YAG laser with semiconductor saturable absorption mirror[J]. Optics and Precision Engineering, 2006, 14(4): 584-588. (in Chinese)
    [13]
    余锦, 刘伟仁. 1.0 μm掺钕介质全固化调Q脉冲激光技术[J]. 光学 精密工程,2000,8(2):297-302.

    YU J, LIU W R. All-solid-state Q-switched lasers with Nd3+-doped crystals oscillating at 1.0 μm[J]. Optics and Precision Engineering, 2000, 8(2): 297-302. (in Chinese)
    [14]
    王蓟, 王国政, 刘洋, 等. 全光纤声光调Q铒镱共掺双包层光纤激光器[J]. 发光学报,2008,29(6):1018-1022.

    WANG J, WANG G ZH, LIU Y, et al. All-fiber acousto-optic Q-switched Er3+/Yb3+ co-doped double-cladding fiber lasers[J]. Chinese Journal of Luminescence, 2008, 29(6): 1018-1022. (in Chinese)
    [15]
    王国立, 郭亨群, 苏培林, 等. nc-Si/SiNx超晶格薄膜实现Nd: YAG激光器调Q和锁模[J]. 发光学报,2008,29(5):905-909.

    WANG G L, GUO H Q, SU P L, et al. Passive Q-switching and mode locking of pulsed Nd: YAG laser with nc-Si/SiNx multilayer[J]. Chinese Journal of Luminescence, 2008, 29(5): 905-909. (in Chinese)
    [16]
    张伶莉, 孙秀冬, 刘永军, 等. 具有外部谐振腔的胆甾相液晶激光器的研究[J]. 液晶与显示,2013,28(5):679-682. doi: 10.3788/YJYXS20132805.0679

    ZHANG L L, SUN X D, LIU Y J, et al. Cholesteric liquid crystals laser with external cavity[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(5): 679-682. (in Chinese) doi: 10.3788/YJYXS20132805.0679
    [17]
    苏晶, 刘玉荣, 莫昌文, 等. ZnO基薄膜晶体管有源层制备技术的研究进展[J]. 液晶与显示,2013,28(3):315-322. doi: 10.3788/YJYXS20132803.0315

    SU J, LIU Y R, MO CH W, et al. Research development on preparation technologies of active layer preparation of ZnO-based thin film[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3): 315-322. (in Chinese) doi: 10.3788/YJYXS20132803.0315
    [18]
    ZIRNGIBL M, STULZ L W, STONE J, et al. 1.2 ps pulses from passively mode-locked laser diode pumped Er-doped fibre ring laser[J]. Electronics Letters, 1991, 27(19): 1734-1735. doi: 10.1049/el:19911079
    [19]
    WEI CH, SHI H X, LUO H Y, et al. 34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser[J]. Optics Express, 2017, 25(16): 19170-19178. doi: 10.1364/OE.25.019170
    [20]
    TANG P H, QIN ZH P, LIU J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855
    [21]
    NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. doi: 10.1073/pnas.0502848102
    [22]
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
    [23]
    CHEN Y, JIANG G B, CHEN SH Q, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833. doi: 10.1364/OE.23.012823
    [24]
    JIANG X T, LIU SH X, LIANG W Y, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx(T = F, O, or OH)[J]. Laser &Photonics Review, 2018, 12(2): 1700229.
    [25]
    WANG SH X, YU H H, ZHANG H J, et al. Broadband few-layer MoS2 saturable absorbers[J]. Advanced Materials, 2014, 26(21): 3538-3544. doi: 10.1002/adma.201306322
    [26]
    WANG M X, ZHANG F, WANG ZH P, et al. Passively Q-switched Nd3+ solid-state lasers with antimonene as saturable absorber[J]. Optics Express, 2018, 26(4): 4085-4095. doi: 10.1364/OE.26.004085
    [27]
    GUO J, HUANG D ZH, ZHANG Y, et al.. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics[J]. Laser &Photonics Reviews, 2019, 13: 1900123.
    [28]
    MOHANRAJ J, VELMURUGAN V, SIVABALAN S. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology[J]. Optical Materials, 2016, 60: 601-617. doi: 10.1016/j.optmat.2016.09.007
    [29]
    TIU Z C, OOI S I, GUO J, et al. Review: application of transition metal dichalcogenide in pulsed fiber laser system[J]. Materials Research Express, 2019, 6(8): 082004. doi: 10.1088/2053-1591/ab2257
    [30]
    LI H, LU G, WANG Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small, 2013, 9(11): 1974-1981. doi: 10.1002/smll.201202919
    [31]
    COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. doi: 10.1126/science.1194975
    [32]
    MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi: 10.1038/nnano.2012.96
    [33]
    BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. doi: 10.1021/nn203879f
    [34]
    LEE Y H, ZHANG X Q, ZHANG W J, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Advanced Materials, 2012, 24(17): 2320-2325. doi: 10.1002/adma.201104798
    [35]
    NAJMAEI S, LIU ZH, ZHOU W, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nature Materials, 2013, 12(8): 754-759. doi: 10.1038/nmat3673
    [36]
    REN L, QI X, LIU Y D, et al. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route[J]. Journal of Materials Chemistry, 2012, 22(11): 4921-4926. doi: 10.1039/c2jm15973b
    [37]
    PRADO G, FOURNÈS L, DELMAS C. On the LixNi0.70Fe0.15Co0.15O2 system: an X-ray diffraction and mössbauer study[J]. Journal of Solid State Chemistry, 2001, 159(1): 103-112. doi: 10.1006/jssc.2001.9137
    [38]
    RAMAKRISHNA MATTE H S S, GOMATHI A, et al. MoS2 and WS2 analogues of graphene[J]. Angewandte Chemie International Edition, 2010, 49(24): 4059-4062. doi: 10.1002/anie.201000009
    [39]
    FOMINSKI V Y, NEVOLIN V N, ROMANOV R I, et al. Ion-assisted deposition of MoSx films from laser-generated plume under pulsed electric field[J]. Journal of Applied Physics, 2001, 89(2): 1449-1457. doi: 10.1063/1.1330558
    [40]
    CONG CH X, SHANG J ZH, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition[J]. Advanced Optical Materials, 2014, 2(2): 131-136. doi: 10.1002/adom.201300428
    [41]
    REICHARDT S, WIRTZ L. Raman Spectroscopy of Graphene[M]. BINDER R. Optical Properties of Graphene. Singapore: World Scientific, 2017.
    [42]
    DRESSELHAUS M S, JORIO A, SAITO R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy[J]. Annual Review of Condensed Matter Physics, 2010, 1: 89-108. doi: 10.1146/annurev-conmatphys-070909-103919
    [43]
    DRESSELHAUS M S, JORIO A, HOFMAN M, et al. Perspectives on carbon nanotubes and graphene raman spectroscopy[J]. Nano Letters, 2010, 10(3): 751-758. doi: 10.1021/nl904286r
    [44]
    ZUO CH H, CAO Y P, YANG Q, et al. Passively Q-switched 295-μm bulk laser based on rhenium disulfide as saturable absorber[J]. IEEE Photonics Technology Letters, 2019, 31(3): 206-209. doi: 10.1109/LPT.2018.2886784
    [45]
    HUANG B, DU L, YI Q, et al. Bulk-structured PtSe2 for femtosecond fiber laser mode-locking[J]. Optics Express, 2019, 27(3): 2604-2611. doi: 10.1364/OE.27.002604
    [46]
    YAO Y P, LI X W, SONG R G, et al. The energy band structure analysis and 2 μm Q-switched laser application of layered rhenium diselenide[J]. RSC Advances, 2019, 9(25): 14417-14421. doi: 10.1039/C9RA02311A
    [47]
    WANG J T, CHEN H, JIANG Z K, et al. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride[J]. Optics Letters, 2018, 43(9): 1998-2001. doi: 10.1364/OL.43.001998
    [48]
    WANG J T, JIANG Z K, CHEN H, et al. Magnetron-sputtering deposited WTe2 for an ultrafast thulium-doped fiber laser[J]. Optics Letters, 2017, 42(23): 5010-5013. doi: 10.1364/OL.42.005010
    [49]
    TIAN X L, WEI R F, LIU M, et al. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser[J]. Nanoscale, 2018, 10(20): 9608-9615. doi: 10.1039/C8NR01573B
    [50]
    WU K, CHEN B H, ZHANG X Y, et al. High-performance mode-locked and Q-switched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective (invited)[J]. Optics Communications, 2018, 406: 214-229. doi: 10.1016/j.optcom.2017.02.024
    [51]
    TIAN Z, WU K, KONG L CH, et al. Mode-locked thulium fiber laser with MoS2[J]. Laser Physics Letters, 2015, 12(6): 065104. doi: 10.1088/1612-2011/12/6/065104
    [52]
    WEI CH, LUO H Y, ZHANG H, et al. Passively Q-switched mid-infrared fluoride fiber laser around 3 μm using a tungsten disulfide (WS2) saturable absorber[J]. Laser Physics Letters, 2016, 13(10): 105108. doi: 10.1088/1612-2011/13/10/105108
    [53]
    HOU J, ZHAO G, WU Y ZH, et al. Femtosecond solid-state laser based on tungsten disulfide saturable absorber[J]. Optics Express, 2015, 23(21): 27292-27298. doi: 10.1364/OE.23.027292
    [54]
    CHEN B H, ZHANG X Y, WU K, et al. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Optics Express, 2015, 23(20): 26723-26737. doi: 10.1364/OE.23.026723
    [55]
    WU K, ZHANG X Y, WANG J, et al. WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers[J]. Optics Express, 2015, 23(9): 11453-11461. doi: 10.1364/OE.23.011453
    [56]
    WU K, ZHANG X Y, WANG J, et al. 463-MHz fundamental mode-locked fiber laser based on few-layer MoS2 saturable absorber[J]. Optics Letters, 2015, 40(7): 1374-1377. doi: 10.1364/OL.40.001374
    [57]
    WANG Q K, CHEN Y, MIAO L L, et al. Wide spectral and wavelength-tunable dissipative soliton fiber laser with topological insulator nano-sheets self-assembly films sandwiched by PMMA polymer[J]. Optics Express, 2015, 23(6): 7681-7693. doi: 10.1364/OE.23.007681
    [58]
    XING CH Y, XIE ZH J, LIANG ZH M, et al. 2D nonlayered selenium nanosheets: facile synthesis, photoluminescence, and ultrafast photonics[J]. Advanced Optical Materials, 2017, 5(24): 1700884. doi: 10.1002/adom.201700884
    [59]
    YAN P G, LIN R Y, CHEN H, et al. Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(3): 264-267. doi: 10.1109/LPT.2014.2361915
    [60]
    YAN P G, LIU A J, CHEN Y SH, et al. Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber[J]. Scientific Reports, 2015, 5(1): 12587. doi: 10.1038/srep12587
    [61]
    WANG K P, WANG J, FAN J T, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets[J]. ACS Nano, 2013, 7(10): 9260-9267. doi: 10.1021/nn403886t
    [62]
    XU B, CHENG Y J, WANG Y, et al. Passively Q-switched Nd: YAlO3 nanosecond laser using MoS2 as saturable absorber[J]. Optics Express, 2014, 22(23): 28934-28940. doi: 10.1364/OE.22.028934
    [63]
    TONGAY S, SAHIN H, KO C, et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling[J]. Nature Communications, 2014, 5(1): 3252. doi: 10.1038/ncomms4252
    [64]
    CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. doi: 10.1038/nchem.1589
    [65]
    XU M SH, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. doi: 10.1021/cr300263a
    [66]
    LIU E F, FU Y J, WANG Y J, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors[J]. Nature Communications, 2015, 6(1): 6991. doi: 10.1038/ncomms7991
    [67]
    TIAN H, CHIN M L, NAJMAEI S, et al. Optoelectronic devices based on two-dimensional transition metal dichalcogenides[J]. Nano Research, 2016, 9(6): 1543-1560. doi: 10.1007/s12274-016-1034-9
    [68]
    ZHANG E Z, JIN Y B, YUAN X, et al. ReS2-based field-effect transistors and photodetectors[J]. Advanced Functional Materials, 2015, 25(26): 4076-4082. doi: 10.1002/adfm.201500969
    [69]
    SU X C, ZHANG B T, WANG Y R, et al. Broadband rhenium disulfide optical modulator for solid-state lasers[J]. Photonics Research, 2018, 6(6): 498-505. doi: 10.1364/PRJ.6.000498
    [70]
    HAN SH, ZHOU SH SH, LIU X L, et al. Rhenium disulfide-based passively Q-switched dual-wavelength laser at 0.95 μm and 1.06 μm in Nd: YAG[J]. Laser Physics Letters, 2018, 15(8): 085804. doi: 10.1088/1612-202X/aac983
    [71]
    LIN M X, PENG Q Q, HOU W, et al. 1.3 μm Q-switched solid-state laser based on few-layer ReS2 saturable absorber[J]. Optics &Laser Technology, 2019, 109: 90-93.
    [72]
    TAO L L, HUANG X W, HE J SH, et al. Vertically standing PtSe2 film: a saturable absorber for a passively mode-locked Nd: LuVO4 laser[J]. Photonics Research, 2018, 6(7): 750-755. doi: 10.1364/PRJ.6.000750
    [73]
    YAN B ZH, ZHANG B T, NIE H K, et al. Bilayer platinum diselenide saturable absorber for 2.0 μm passively Q-switched bulk lasers[J]. Optics Express, 2018, 26(24): 31657-31663. doi: 10.1364/OE.26.031657
    [74]
    LI Z Q, LI R, PANG CH, et al. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe2 saturable absorber[J]. Optics Express, 2019, 27(6): 8727-8737. doi: 10.1364/OE.27.008727
    [75]
    WANG SH Q, HUANG H T, LIU X, et al. Rhenium diselenide as the broadband saturable absorber for the nanosecond passively Q-switched thulium solid-state lasers[J]. Optical Materials, 2019, 88: 630-634. doi: 10.1016/j.optmat.2018.12.042
    [76]
    XUE Y CH, LI L, ZHANG B, et al. ReSe2 passively Q-switched Nd: Y3Al5 O12 laser with near repetition rate limit of microsecond pulse output[J]. Optics Communications, 2019, 455: 165-170.
    [77]
    YAO Y P, CUI N, WANG Q G, et al. Highly efficient continuous-wave and ReSe2 Q-switched ~3 μm dual-wavelength Er: YAP crystal lasers[J]. Optics Letters, 2019, 44(11): 2839-2842. doi: 10.1364/OL.44.002839
    [78]
    LI Z Q, DONG N N, ZHANG Y X, et al. Invited Article: mode-locked waveguide lasers modulated by rhenium diselenide as a new saturable absorber[J]. APL Photonics, 2018, 3(8): 080802. doi: 10.1063/1.5032243
    [79]
    LI CH, LENG Y X, HUO J J. Diode-pumped solid-state Q-switched laser with rhenium diselenide as saturable absorber[J]. Applied Sciences, 2018, 8(10): 1753. doi: 10.3390/app8101753
    [80]
    YAN ZH Y, LI T, ZHAO SH ZH, et al. MoTe2 saturable absorber for passively Q-switched Ho, Pr: LiLuF4 laser at ~3 μm[J]. Optics and Laser Technology, 2018, 100: 261-264. doi: 10.1016/j.optlastec.2017.10.012
    [81]
    LI Y H, XU Y F, XU G Y, et al. Performance of an Yb: LaCa4O(BO3)3 crystal laser at 1.03~1.04 μm passively Q-switched with 2D MoTe2 saturable absorber[J]. Infrared Physics &Technology, 2019, 99: 167-171.
    [82]
    ZHANG Y ZH, WANG J W, GUAN X F, et al. MoTe2-based broadband wavelength tunable eye-safe pulsed laser source at 1.9 μm[J]. IEEE Photonics Technology Letters, 2018, 30(21): 1890-1893. doi: 10.1109/LPT.2018.2871467
    [83]
    LIANG Y Y, ZHAO J, QIAO W CH, et al. Passively Q-switched Er: YAG laser at 1645 nm utilizing a multilayer molybdenum ditelluride (MoTe2) saturable absorber[J]. Laser Physics Letters, 2018, 15(9): 095801. doi: 10.1088/1612-202X/aacfae
    [84]
    YAN B ZH, ZHANG B T, NIE H K, et al. High-power passively Q-switched 2.0 μm all-solid-state laser based on a MoTe2 saturable absorber[J]. Optics Express, 2018, 26(14): 18505-18512. doi: 10.1364/OE.26.018505
    [85]
    MA Y J, TIAN K, DOU X D, et al. Passive Q-switching induced by few-layer MoTe2 in an Yb: YCOB microchip laser[J]. Optics Express, 2018, 26(19): 25147-25155. doi: 10.1364/OE.26.025147
    [86]
    TIAN K, LI Y H, YANG J N, et al. Passively Q-switched Yb: KLu(WO4)2 laser with 2D MoTe2 acting as saturable absorber[J]. Applied Physics B, 2019, 125(2): 24. doi: 10.1007/s00340-019-7135-x
    [87]
    CHEN L J, LI X, ZHANG H K, et al. Passively Q-switched 1.989 μm all-solid-state laser based on a WTe2 saturable absorber[J]. Applied Optics, 2018, 57(35): 10239-10242. doi: 10.1364/AO.57.010239
    [88]
    YAN ZH Y, LI T, ZHAO J, et al. Tungsten ditelluride for a nanosecond Ho, Pr: LiLuF4 laser at 2.95 μm[J]. Laser Physics Letters, 2018, 15(4): 045801. doi: 10.1088/1612-202X/aaa94b
    [89]
    LI G Q, WU CH, YAN ZH Y, et al. TiS2 as a novel saturable absorber for a 1645 nm passively Q-switched laser[J]. Laser Physics, 2019, 29(5): 055801. doi: 10.1088/1555-6611/ab0d13
    [90]
    WOODWARD R I, KELLEHER E J R, HOWE R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer Molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122. doi: 10.1364/OE.22.031113
    [91]
    CUI Y D, LU F F, LIU X M. Nonlinear saturable and polarization-induced absorption of rhenium disulfide[J]. Scientific Reports, 2017, 7(1): 40080. doi: 10.1038/srep40080
    [92]
    MAO D, CUI X Q, GAN X T, et al. Passively Q-switched and mode-locked fiber laser based on an ReS2 saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1100406.
    [93]
    LU F F. Passively harmonic mode-locked fiber laser based on ReS2 saturable absorber[J]. Modern Physics Letters B, 2017, 31(18): 1750206. doi: 10.1142/S0217984917502062
    [94]
    ZHAO R W, LI G R, ZHANG B T, et al. Multi-wavelength bright-dark pulse pair fiber laser based on rhenium disulfide[J]. Optics Express, 2018, 26(5): 5819-5826. doi: 10.1364/OE.26.005819
    [95]
    LU B L, WEN Z R, HUANG K X, et al. Passively Q-switched Yb3+-doped fiber laser with ReS2 Saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(4): 1600104.
    [96]
    YUAN J, MU H R, LI L, et al. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers[J]. ACS Applied Materials &Interfaces, 2018, 10(25): 21534-21540.
    [97]
    ZHANG K, FENG M, REN Y Y, et al. Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber[J]. Photonics Research, 2018, 6(9): 893-899. doi: 10.1364/PRJ.6.000893
    [98]
    LI Y H, LOU Y J, HE J S, et al. Q-switched ytterbium fiber laser based on rhenium diselenide as a saturable absorber[J]. Journal of Physics D:Applied Physics, 2019, 52(46): 465101. doi: 10.1088/1361-6463/ab3883
    [99]
    LEE J, LEE K, KWON S, et al. Investigation of nonlinear optical properties of rhenium diselenide and its application as a femtosecond mode-locker[J]. Photonics Research, 2019, 7(9): 984-993. doi: 10.1364/PRJ.7.000984
    [100]
    DU L, JIANG G B, MIAO L L, et al. Few-layer rhenium diselenide: an ambient-stable nonlinear optical modulator[J]. Optical Materials Express, 2018, 8(4): 926-935. doi: 10.1364/OME.8.000926
    [101]
    WANG G M. Wavelength-switchable passively mode-locked fiber laser with mechanically exfoliated molybdenum ditelluride on side-polished fiber[J]. Optics &Laser Technology, 2017, 96: 307-312.
    [102]
    LIU M L, LIU W J, WEI ZH Y. MoTe2 saturable absorber with high modulation depth for erbium-doped fiber laser[J]. Journal of Lightwave Technology, 2019, 37(13): 3100-3105. doi: 10.1109/JLT.2019.2910892
    [103]
    LIU M L, LIU W J, YAN P G, et al. High-power MoTe2-based passively Q-switched erbium-doped fiber laser[J]. Chinese Optics Letters, 2018, 16(2): 020007. doi: 10.3788/COL201816.020007
    [104]
    WANG J T, JIANG Z K, CHEN H, et al. High energy soliton pulse generation by a magnetron -sputtering- deposition -grown MoTe2 saturable absorber[J]. Photonics Research, 2018, 6(6): 535-541. doi: 10.1364/PRJ.6.000535
    [105]
    KO S, LEE J, LEE J H. Passively Q-switched ytterbium-doped fiber laser using the evanescent field interaction with bulk-like WTe2 particles[J]. Chinese Optics Letters, 2018, 16(2): 020017. doi: 10.3788/COL201816.020017
    [106]
    LIU M L, OUYANG Y Y, HOU H R, et al. Q-switched fiber laser operating at 1.5 μm based on WTe2[J]. Chinese Optics Letters, 2019, 17(2): 020006. doi: 10.3788/COL201917.020006
    [107]
    ZHU X, CHEN S, ZHANG M, et al. TiS2-based saturable absorber for ultrafast fiber lasers[J]. Photonics Research, 2018, 6(10): C44-C48. doi: 10.1364/PRJ.6.000C44
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article views(3913) PDF downloads(260) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return