Volume 13 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
FAN Wen-qiang, WANG Zhi-chen, CHEN Bao-gang, LI Hong-wen, CHEN Tao, AN Qi-chang, FAN Lei. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032
Citation: FAN Wen-qiang, WANG Zhi-chen, CHEN Bao-gang, LI Hong-wen, CHEN Tao, AN Qi-chang, FAN Lei. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. doi: 10.37188/CO.2020-0032

Review of the active control technology of large aperture ground telescopes with segmented mirrors

Funds:  Supported by Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2020221), Bethune Medical Engineering and Instrument Center Foundation (No. BQEGCZX2019042), National Natural Science Foundation of China (No. 11703026, No. 11803034)
More Information
  • Corresponding author: anjj@mail.ustc.edu.cn
  • Received Date: 02 Mar 2020
  • Rev Recd Date: 24 Apr 2020
  • Available Online: 15 Oct 2020
  • Publish Date: 01 Dec 2020
  • Segmented mirror technology is one of the three ways to realize optical synthetic aperture telescope, and it is an important area of development for future large aperture telescopes. A telescope’s active control system of its segmented mirrors directly determines its large aperture mirror’s optical performance. This paper focuses on the active control technology of large aperture ground telescopes with segmented mirrors. In this paper, we introduce the development process of a segmented mirror telescope and the main structure of the segmented mirror active control system, then summarize and analyze the domestic and foreign development of active control systems of segmented mirrors. In this paper, the key technologies of segmented mirror active control systems and how they achieve active adjustment and active maintenance are summarized. Their applications and the direction of their development are also proposed with respect to deep learning theory in closed-loop control, co-phase detection and correction, system-level simulation modeling technology. This paper provides guidance for the design of a segmented mirror control system in the next generation of ground-based large aperture telescopes in China.

     

  • loading
  • [1]
    周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38. doi: 10.3788/co.20171001.0025

    ZHOU CH H, WANG ZH L, ZHU F. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25-38. (in Chinese) doi: 10.3788/co.20171001.0025
    [2]
    KURITA M, OHMORI H, KUNDA M, et al. Light-weight telescope structure optimized by genetic algorithm[J]. Proceedings of SPIE, 2010, 7733: 77333E.
    [3]
    刘忠, 邓元勇, 杨德华, 等. 中国巨型太阳望远镜[J]. 中国科学: 物理学 力学 天文学,2019,49(5):059604.

    LIU ZH, DENG Y Y, YANG D H, et al. Chinese giant solar telescope[J]. Scientia Sinica Physica,Mechanica &Astronomica, 2019, 49(5): 059604. (in Chinese)
    [4]
    BERNSTEIN R A, MCCARTHY P J, RAYBOULD K, et al. Overview and status of the giant Magellan telescope project[J]. Proceedings of SPIE, 2014, 9145: 91451C.
    [5]
    NELSON J E, GILLINGHAM P R. Overview of the performance of the W. M. Keck Observatory[J]. Proceedings of SPIE, 1994, 2199: 82-93. doi: 10.1117/12.176154
    [6]
    RAMSEY L W, ADAMS M T, BARNES T G, et al. Early performance and present status of the Hobby-Eberly Telescope[J]. Proceedings of SPIE, 1998, 3352: 34-42. doi: 10.1117/12.319287
    [7]
    STOBIE R, MEIRING J G, BUCKLEY D A H. Design of the southern African large telescope (SALT)[J]. Proceedings of SPIE, 2000, 4003: 355-362. doi: 10.1117/12.391525
    [8]
    CASTRO LOPEZ-TARRUELLA F J, FERNANDEZ IBARZ J M, ANDERSEN T. Global model of the Gran Telescopio canarias[J]. Proceedings of SPIE, 2002, 4757: 93-102. doi: 10.1117/12.489823
    [9]
    GONG X F, CUI X Q, CHEN H Y, et al. Design and analysis of support system of the LAMOST primary mirror[J]. Proceedings of SPIE, 2003, 4837: 667-674. doi: 10.1117/12.456769
    [10]
    NELSON J, SANDERS G H. The status of the Thirty Meter Telescope project[J]. Proceedings of SPIE, 2008, 70121: 70121A.
    [11]
    MCPHERSON A, SPYROMILIO J, KISSLER-PATIG M, et al. E-ELT update of project and effect of change to 39m design[J]. Proceedings of SPIE, 2012, 8444: 84441F.
    [12]
    PARIHAR P P, DESHMUKH P, JACOB A, et al. Prototype segmented mirror telescope: a pathfinder of India's Large Optical-NIR telescope project[J]. Proceedings of SPIE, 2018, 10700: 107001A.
    [13]
    CUI X Q, ZHU Y T. Chinese Large Optic/IR Telescope (LOT): planning for the next decade[J]. Proceedings of SPIE, 2016, 9906: 990607.
    [14]
    PREUMONT A, BASTAITS R, RODRIGUES G. Scale effects in active optics of large segmented mirrors[J]. Mechatronics, 2009, 19(8): 1286-1293. doi: 10.1016/j.mechatronics.2009.08.005
    [15]
    陆金娴. 光学镜面位姿检测与主动校正方法研究[D]. 南京: 南京航空航天大学, 2019.

    LU J X. Research on optical mirror position detection and active correction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese).
    [16]
    JARED R C, ARTHUR A A, ANDREAE S, et al. W. M. Keck Telescope segmented primary mirror active control system[J]. Proceedings of SPIE, 1990, 1236: 996-1008. doi: 10.1117/12.19266
    [17]
    CHANAN G A, NELSON J E, MAST T S, et al. W. M. Keck Telescope phasing camera system[J]. Proceedings of SPIE, 1994, 2198: 1139-1150. doi: 10.1117/12.176697
    [18]
    KRABBENDAM V L, SEBRING T A, RAY F B, et al. Development and performance of Hobby-Eberly Telescope 11-m segmented mirror[J]. Proceedings of SPIE, 1998, 3352: 436-445. doi: 10.1117/12.319265
    [19]
    ADAMS M T, PALUNAS P, BOOTH J A, et al. Hobby-Eberly Telescope segment alignment maintenance system[J]. Proceedings of SPIE, 2003, 4837: 693-701. doi: 10.1117/12.458006
    [20]
    HILL G J, DRORY N, GOOD J M, et al. Completion and performance of the Hobby-Eberly telescope wide field upgrade[J]. Proceedings of SPIE, 2018, 10700: 107000P.
    [21]
    HÄUSER M, RICHTER J, KRIEL H, et al. Upgrade of the HET segment control system, utilizing state-of-the-art, decentralized and embedded system controllers[J]. Proceedings of SPIE, 2016, 9906: 990602. doi: 10.1117/12.2232410
    [22]
    SWIEGERS J, GAJJAR H. Completion of the Southern African Large Telescope (SALT) primary mirror system[J]. Proceedings of SPIE, 2004, 5489: 881-891. doi: 10.1117/12.551410
    [23]
    WIRTH A, GONSIOROWSKI T, ROBERTS J, et al. Developing and testing an optical alignment system for SALT’s segmented primary mirror[J]. Proceedings of SPIE, 2004, 5489: 892-902. doi: 10.1117/12.551425
    [24]
    SWIEGERS J, GAJJAR H, ROZIERE D, et al. A unique edge sensing system for aligning SALT's primary mirror segments[J]. Proceedings of SPIE, 2004.
    [25]
    STRYDOM O J, LOVE J, GAJJAR H. Results from bonding of the SALT primary mirror edge sensors[J]. Proceedings of SPIE, 2016, 9912: 991244. doi: 10.1117/12.2233101
    [26]
    BUCKLEY D A H, BUOUS S, GAJJAR H, et al. A novel optical sensor for mirror edge sensing[J]. Proceedings of SPIE, 2010, 7739: 773912. doi: 10.1117/12.858131
    [27]
    LEFORT B, CASTRO J. The GTC primary mirror control system[J]. Proceedings of SPIE, 2008, 7019: 70190I.
    [28]
    FUERTES J M, DE MIGUEL S, VILLA R, et al.. Dynamic analysis of a segmented telescope test bed[C]. Proceedings of 1997 European Control Conference (ECC), IEEE, 1997: 2898-2903.
    [29]
    XU X Q, XU L ZH, JIN G P. Overview of LAMOST control system[J]. Proceedings of SPIE, 2003, 4837: 484-493. doi: 10.1117/12.456722
    [30]
    CUI X Q, SU D Q, WANG Y N, et al. The optical performance of LAMOST telescope[J]. Proceedings of SPIE, 2010, 7733: 773309. doi: 10.1117/12.856686
    [31]
    SU D Q, CUI X Q. Active optics in LAMOST[J]. Chinese Journal of Astronomy and Astrophysics, 2004, 4(1): 1-9. doi: 10.1088/1009-9271/4/1/1
    [32]
    ZHANG Y. Progress of LAMOST wavefront sensing[J]. Proceedings of SPIE, 2008, 7012: 70123H.
    [33]
    MACMYNOWSKI D G, THOMPSON P M, SHELTON J C, et al. Control system modeling for the thirty meter telescope primary mirror[J]. Proceedings of SPIE, 2011, 8336: 83360R. doi: 10.1117/12.914941
    [34]
    LORELL K R, AUBRUN J N, CLAPPIER R R, et al. Design of a prototype primary mirror segment positioning actuator for the Thirty Meter Telescope[J]. Proceedings of SPIE, 2006, 6267: 62672T. doi: 10.1117/12.672917
    [35]
    TROY M, CHANAN G, MICHAELS S, et al. A conceptual design for the Thirty Meter Telescope alignment and phasing system[J]. Proceedings of SPIE, 2008, 7012: 70120Y. doi: 10.1117/12.788560
    [36]
    DIMMLER M, ERM T, BAUVIR B, et al. E-ELT primary mirror control system[J]. Proceedings of SPIE, 2008, 7012: 70121O.
    [37]
    THOMPSON P M, MACMYNOWSKI D G, REGEHR M W, et al. Servo design and analysis for the Thirty Meter Telescope primary mirror actuators[J]. Proceedings of SPIE, 2010, 7733: 77332F. doi: 10.1117/12.857371
    [38]
    李爱华, 周国华, 李国平, 等. 射电望远镜主动反射面系统的控制[J]. 光学 精密工程,2016,24(7):1711-1718.

    LI A H, ZHOU G H, LI G P, et al. Control of active reflector system for radio telescope[J]. Optics and Precision Engineering, 2016, 24(7): 1711-1718. (in Chinese)
    [39]
    WITVOET G, DEN BREEJE R, NIJENHUIS J, et al. Dynamic analysis and control of mirror segment actuators for the European Extremely Large Telescope[J]. Journal of Astronomical Telescopes,Instruments,and Systems, 2015, 1(1): 019003. doi: 10.1117/1.JATIS.1.1.019003
    [40]
    DESHMUKH P G, PARIHAR P, BALASUBRAMANIAM K A, et al. Dynamic loading assembly for testing actuators of segmented mirror telescope[J]. Journal of Astronomical Instrumentation, 2017, 6(3): 1750006. doi: 10.1142/S2251171717500064
    [41]
    王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J]. 光学 精密工程,2018,26(10):2484-2492. doi: 10.3788/OPE.20182610.2484

    WANG ZH Y, JIA G X. Asymmetric hysteresis modeling and internal model control of piezoceramic actuators[J]. Optics and Precision Engineering, 2018, 26(10): 2484-2492. (in Chinese) doi: 10.3788/OPE.20182610.2484
    [42]
    SEDGHI B, MULLER M, BAUVIR B. Dynamical simulation of E-ELT segmented primary mirror[J]. Proceedings of SPIE, 2011, 8336: 83360D.
    [43]
    郭泰, 戴懿纯, 杨德华, 等. 环形拼接太阳望远镜主镜控制系统的频率特性[J]. 光学学报,2018,38(11):1122001. doi: 10.3788/AOS201838.1122001

    GUO T, DAI Y CH, YANG D H, et al. Frequency characteristics of primary mirror control system in segmented ring solar telescope[J]. Acta Optica Sinica, 2018, 38(11): 1122001. (in Chinese) doi: 10.3788/AOS201838.1122001
    [44]
    XU ZH X, YANG P, HU K, et al. Deep learning control model for adaptive optics systems[J]. Applied Optics, 2019, 58(8): 1998-2009. doi: 10.1364/AO.58.001998
    [45]
    CHANAN G, TROY M, DEKENS F, et al. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm[J]. Applied Optics, 1998, 37(1): 140-155. doi: 10.1364/AO.37.000140
    [46]
    CHANAN G, OHARA C, TROY M. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 2000, 39(25): 4706-4714. doi: 10.1364/AO.39.004706
    [47]
    林旭东, 王建立, 刘欣悦, 等. 拼接镜主动光学共相实验[J]. 光学 精密工程,2010,18(7):1520-1528.

    LIN X D, WANG J L, LIU X Y, et al. Co-phase experiment of active optics for segmented-mirrors[J]. Optics and Precision Engineering, 2010, 18(7): 1520-1528. (in Chinese)
    [48]
    CHANAN G, TROY M, SIRKO E. Phase discontinuity sensing: a method for phasing segmented mirrors in the infrared[J]. Applied Optics, 1999, 38(4): 704-713. doi: 10.1364/AO.38.000704
    [49]
    CHANAN G A, TROY M, OHARA C M. Phasing the primary mirror segments of the Keck telescopes: a comparison of different techniques[J]. Proceedings of SPIE, 2000, 4003: 188-202. doi: 10.1117/12.391510
    [50]
    郑彬, 陈永和, 傅雨田. 拼接式反射镜共焦误差检测[J]. 光学 精密工程,2019,27(1):26-33. doi: 10.3788/OPE.20192701.0026

    ZHENG B, CHEN Y H, FU Y T. Co-focus error detection of segmented mirrors[J]. Optics and Precision Engineering, 2019, 27(1): 26-33. (in Chinese) doi: 10.3788/OPE.20192701.0026
    [51]
    LI B, YU W H, CHEN M, et al. Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm[J]. Applied Optics, 2017, 56(32): 8871-8879. doi: 10.1364/AO.56.008871
    [52]
    BONNET H, ESSELBORN M, KORNWEIBEL N, et al. Fast optical re-phasing of segmented primary mirrors[J]. Proceedings of SPIE, 2014, 9145: 91451U.
    [53]
    李斌, 刘燕德, 谢锋云. 拼接镜新型粗共相检测方法[J]. 光学 精密工程,2018,26(11):2647-2653. doi: 10.3788/OPE.20182611.2647

    LI B, LIU Y D, XIE F Y. Coarse co-phasing detection of segmented mirrors[J]. Optics and Precision Engineering, 2018, 26(11): 2647-2653. (in Chinese) doi: 10.3788/OPE.20182611.2647
    [54]
    SIMAR J F, STOCKMAN Y, SURDEJ J. Smart co-phasing system for segmented mirror telescopes[J]. Proceedings of SPIE, 2016, 9906: 99065F.
    [55]
    LI D Q, XU SH Y, WANG D, et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2019, 44(5): 1170-1173. doi: 10.1364/OL.44.001170
    [56]
    宣丽, 李大禹, 刘永刚. 液晶自适应光学在天文学研究中的应用展望[J]. 液晶与显示,2015,30(1):1-9.

    XUAN L, LI D Y, LIU Y G. Prospect of liquid crystal adaptive optics in astronomy application[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1): 1-9. (in Chinese)
    [57]
    李大禹. 基于多GPU的液晶自适应光学波前处理器[J]. 液晶与显示,2016,31(5):491-496. doi: 10.3788/YJYXS20163105.0491

    LI D Y. Liquid crystal adaptive optics wavefront processor based on multi-GPU[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(5): 491-496. (in Chinese) doi: 10.3788/YJYXS20163105.0491
    [58]
    廖劲峰, 丁亚林, 姚园. 机载折反式光学系统的无热化设计[J]. 液晶与显示,2019,34(1):39-46. doi: 10.3788/YJYXS20193401.0039

    LIAO J F, DING Y L, YAO Y. A thermalization design of airborne mirror-lens optical system[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 39-46. (in Chinese) doi: 10.3788/YJYXS20193401.0039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views(2749) PDF downloads(251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return