Citation: | CHEN Xiao-Dong, AI Da-Hang, ZHANG Jia-Chen, CAI Huai-Yu, CUI Ke-Rang. Gabor filter fusion network for pavement crack detection[J]. Chinese Optics, 2020, 13(6): 1293-1301. doi: 10.37188/CO.2020-0041 |
[1] |
SHAO CH, CHEN Y H, XU F H, et al.. A kind of pavement crack detection method based on digital image processing[C]. Proceedings of 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, IEEE, 2019: 397-401.
|
[2] |
MANDAL V, UONG L, ADU-GYAMFI Y. Automated road crack detection using deep convolutional neural networks[C]. Proceedings of 2018 IEEE International Conference on Big Data, IEEE, 2018: 5212-5215.
|
[3] |
CHRISTODOULOU S E, HADJIDEMETRIOU G M, KYRIAKOU C. Pavement defects detection and classification using smartphone-based vibration and video signals[M]. SMITH I F C, DOMER B. Advanced Computing Strategies for Engineering. Cham: Springer, 2018: 125-138.
|
[4] |
KOMORI T, MATSUSHIMA K, TAKAHASHI O. Automatic pavement crack detection using multi-scale image & neighborhoods information[C]. Proceedings of 2019 International Conference on Mechatronics, Robotics and Systems Engineering, IEEE, 2019: 227-232.
|
[5] |
杨会玲, 崔洪恩, 孙慧婷, 等. 多尺度矩阵滤波的路面裂缝检测方法研究[J]. 液晶与显示,2016,31(8):778-783. doi: 10.3788/YJYXS20163108.0778
YANG H L, CUI H E, SUN H T, et al. Method for pavement cracks detection based on multi-scale matrix filtering[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(8): 778-783. (in Chinese) doi: 10.3788/YJYXS20163108.0778
|
[6] |
CHEN C, SEO H S, ZHAO Y, et al.. Automatic pavement crack detection based on image recognition[C]. Proceedings of International Conference on Smart Infrastructure and Construction 2019, ICE, 2019: 361-369.
|
[7] |
陈建立. 基于图像处理方法的混凝土检测方法[J]. 液晶与显示,2020,35(4):395-401. doi: 10.3788/YJYXS20203504.0395
CHEN J L. Concrete detection method based on image processing[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(4): 395-401. (in Chinese) doi: 10.3788/YJYXS20203504.0395
|
[8] |
OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]. Proceedings of 2009 17th European Signal Processing Conference, IEEE, 2009: 622-626.
|
[9] |
KIM H, KIM H, HONG Y W, et al. Detecting construction equipment using a region-based fully convolutional network and transfer learning[J]. Journal of Computing in Civil Engineering, 2018, 32(2): 04017082. doi: 10.1061/(ASCE)CP.1943-5487.0000731
|
[10] |
马浩鹏, 朱春媚, 周文辉, 等. 基于深度学习的乳液泵缺陷检测算法[J]. 液晶与显示,2019,34(1):81-89. doi: 10.3788/YJYXS20193401.0081
MA H P, ZHU CH M, ZHOU W H, et al. Defect detection algorithm of lotion pump based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 81-89. (in Chinese) doi: 10.3788/YJYXS20193401.0081
|
[11] |
周筑博, 高佼, 张巍, 等. 基于深度卷积神经网络的输电线路可见光图像目标检测[J]. 液晶与显示,2018,33(4):317-325. doi: 10.3788/YJYXS20183304.0317
ZHOU ZH B, GAO J, ZHANG W, et al. Object detection of transmission line visual images based on deep convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(4): 317-325. (in Chinese) doi: 10.3788/YJYXS20183304.0317
|
[12] |
ZHANG L, YANG F, ZHANG Y D, et al.. Road crack detection using deep convolutional neural network[C]. Proceedings of 2016 IEEE International Conference on Image Processing, IEEE, 2016: 3708-3712.
|
[13] |
PARK S, BANG S, KIM H, et al. Patch-based crack detection in black box images using convolutional neural networks[J]. Journal of Computing in Civil Engineering, 2019, 33(3): 04019017. doi: 10.1061/(ASCE)CP.1943-5487.0000831
|
[14] |
MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141. doi: 10.1111/mice.12387
|
[15] |
刘康, 陈小林, 刘岩俊, 等. 基于Gabor和灰度共生矩阵混合特征叶片泵装配质量检测[J]. 液晶与显示,2018,33(11):936-942. doi: 10.3788/YJYXS20183311.0936
LIU K, CHEN X L, LIU Y J, et al. Vane pump assembly quality detection based on Gabor and gray level co-occurrence matrix hybrid characteristics[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(11): 936-942. (in Chinese) doi: 10.3788/YJYXS20183311.0936
|
[16] |
ISAVAND RAHMANI A, AKBARI H, ESMAILI S S. Retinal blood vessel segmentation using Gabor filter and morphological reconstruction[J]. Signal Processing and Renewable Energy, 2020, 4(1): 77-88.
|
[17] |
MEDINA R, LLAMAS J, GÓMEZ-GARCÍA-BERMEJO J, et al. Crack detection in concrete tunnels using a gabor filter invariant to rotation[J]. Sensors, 2017, 17(7): 1670. doi: 10.3390/s17071670
|
[18] |
SALMAN M, MATHAVAN S, KAMAL K, et al.. Pavement crack detection using the Gabor filter[C]. Proceedings of 16th International IEEE Conference on Intelligent Transportation Systems, IEEE, 2013: 2039-2044.
|
[19] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, ICLR 2015.
|
[20] |
DAGHER I, ABUJAMRA S. Combined wavelet and Gabor convolution neural networks[J]. International Journal of Wavelets,Multiresolution and Information Processing, 2019, 17(6): 1950046. doi: 10.1142/S0219691319500462
|
[21] |
孔锐, 张冰. Gabor滤波器参数设置[J]. 控制与决策,2012,27(8):1277-1280.
KONG R, ZHANG B. Design of Gabor filters’ parameter[J]. Control and Decision, 2012, 27(8): 1277-1280. (in Chinese)
|
[22] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of the 25th International Conference on Neural Information Processing Systems, ACM, 2012: 1097-1105.
|
[23] |
DENG J, DONG W, SOCHER R, et al.. ImageNet: a large-scale hierarchical image database[C]. Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009: 248-255.
|
[24] |
LUAN SH ZH, CHEN CH, ZHANG B CH, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366. doi: 10.1109/TIP.2018.2835143
|
[25] |
李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报,2019,45(9):1727-1742.
LI L F, MA W F, LI L, et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. (in Chinese)
|
[26] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, ACM, 2015: 448-456.
|
[27] |
HE K M, ZHANG X Y, REN SH Q, et al.. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
|
[28] |
EISENBACH M, STRICKER R, SEICHTER D, et al.. How to get pavement distress detection ready for deep learning? A systematic approach[C]. Proceedings of 2017 International Joint Conference on Neural Networks, IEEE, 2017: 2039-2047.
|
[29] |
OLIVEIRA H, CORREIA P L. CrackIT—An image processing toolbox for crack detection and characterization[C]. Proceedings of 2014 IEEE International Conference on Image Processing, IEEE, 2014: 798-802.
|