Citation: | ZHANG Rui-yan, JIANG Xiu-jie, AN Jun-she, CUI Tian-shu. Design of global-contextual detection model for optical remote sensing targets[J]. Chinese Optics, 2020, 13(6): 1302-1313. doi: 10.37188/CO.2020-0057 |
[1] |
许夙晖, 慕晓冬, 柯冰, 等. 基于遥感影像的军事阵地动态监测技术研究[J]. 遥感技术与应用,2014,29(3):511-516.
XU S H, MU X D, KE B, et al. Dynamic monitoring of military position based on remote sensing image[J]. Remote Sensing Technology and Application, 2014, 29(3): 511-516. (in Chinese)
|
[2] |
VALERO S, CHANUSSOT J, BENEDIKTSSON J A, et al. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images[J]. Pattern Recognition Letters, 2010, 31(10): 1120-1127. doi: 10.1016/j.patrec.2009.12.018
|
[3] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2005: 886-893.
|
[4] |
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
|
[5] |
LIU W, ANGUELOV D, ERHAN D, et al.. SSD: single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Springer, 2016: 21-37.
|
[6] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv: 1804.02767, 2018.
|
[7] |
马永杰, 宋晓凤. 基于YOLO和嵌入式系统的车流量检测[J]. 液晶与显示,2019,34(6):613-618. doi: 10.3788/YJYXS20193406.0613
MA Y J, SONG X F. Vehicle flow detection based on YOLO and embedded system[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 613-618. (in Chinese) doi: 10.3788/YJYXS20193406.0613
|
[8] |
LIN T Y, GOYAL P, GIRSHICK R, et al.. Focal loss for dense object detection[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, IEEE, 2017: 2999-3007.
|
[9] |
LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 765-781.
|
[10] |
ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[J]. arXiv: 1904.07850, 2019.
|
[11] |
XIAO B, WU H P, WEI Y CH. Simple baselines for human pose estimation and tracking[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 472-487.
|
[12] |
LI K, CHENG G, BU SH H, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337-2348. doi: 10.1109/TGRS.2017.2778300
|
[13] |
MA W P, GUO Q Q, WU Y, et al. A novel multi-model decision fusion network for object detection in remote sensing images[J]. Remote Sensing, 2019, 11(7): 737. doi: 10.3390/rs11070737
|
[14] |
梁华, 宋玉龙, 钱锋, 等. 基于深度学习的航空对地小目标检测[J]. 液晶与显示,2018,33(9):793-800. doi: 10.3788/YJYXS20183309.0793
LIANG H, SONG Y L, QIAN F, et al. Detection of small target in aerial photography based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 793-800. (in Chinese) doi: 10.3788/YJYXS20183309.0793
|
[15] |
姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报,2019,39(11):1128002. doi: 10.3788/AOS201939.1128002
YAO Q L, HU X, LEI H. Object detection in remote sensing images using multiscale convolutional neural networks[J]. Acta Optica Sinica, 2019, 39(11): 1128002. (in Chinese) doi: 10.3788/AOS201939.1128002
|
[16] |
邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报,2018,47(9):1216-1227.
DENG ZH P, SUN H, LEI L, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1216-1227. (in Chinese)
|
[17] |
董潇潇, 何小海, 吴晓红, 等. 基于注意力掩模融合的目标检测算法[J]. 液晶与显示,2019,34(8):825-833. doi: 10.3788/YJYXS20193408.0825
DONG X X, HE X H, WU X H, et al. Object detection algorithm based on attention mask fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(8): 825-833. (in Chinese) doi: 10.3788/YJYXS20193408.0825
|
[18] |
WANG CH, BAI X, WANG SH, et al. Multiscale visual attention networks for object detection in VHR remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 310-314. doi: 10.1109/LGRS.2018.2872355
|
[19] |
左俊皓, 赵聪, 朱晓龙, 等. Faster-RCNN和Level-Set结合的高分遥感影像建筑物提取[J]. 液晶与显示,2019,34(4):439-447. doi: 10.3788/YJYXS20193404.0439
ZUO J H, ZHAO C, ZHU X L, et al. High-resolution remote sensing image building extraction combined with Faster-RCNN and Level-Set[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 439-447. (in Chinese) doi: 10.3788/YJYXS20193404.0439
|
[20] |
于渊博, 张涛, 郭立红, 等. 卫星视频运动目标检测算法[J]. 液晶与显示,2017,32(2):138-143. doi: 10.3788/YJYXS20173202.0138
YU Y B, ZHANG T, GUO L H, et al. Moving objects detection on satellite video[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(2): 138-143. (in Chinese) doi: 10.3788/YJYXS20173202.0138
|
[21] |
LIU W, RABINOVICH A, BERG A C. Parsenet: looking wider to see better[J]. arXiv: 1506.04579, 2015.
|
[22] |
ZHANG H, DANA K, SHI J P, et al.. Context encoding for semantic segmentation[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 7151-7160.
|
[23] |
HE K M, ZHANG X Y, REN SH Q, et al.. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
|
[24] |
ZHU R, ZHANG SH F, WANG X B, et al.. ScratchDet: training single-shot object detectors from scratch[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 2263-2272.
|
[25] |
LIN M, CHEN Q, YAN SH CH. Network in network[J]. arXiv: 1312.4400, 2013.
|
[26] |
CHENG G, ZHOU P CH, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. doi: 10.1109/TGRS.2016.2601622
|
[27] |
XIA G S, BAI X, DING J, et al.. DOTA: a large-scale dataset for object detection in aerial images[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 3974-3983.
|
[28] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]. Proceedings of the 13th European Conference on Computer Vision, Springer, 2014: 818-833.
|
[29] |
CHEN K, WANG J Q, PANG J M, et al.. MMDetection: open MMLab detection toolbox and benchmark[J]. arXiv: 1906.07155v1, 2019.
|
[30] |
CHEN CH Y, GONG W G, CHEN Y L, et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019, 11(3): 339. doi: 10.3390/rs11030339
|