Volume 13 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
ZHANG Rui-yan, JIANG Xiu-jie, AN Jun-she, CUI Tian-shu. Design of global-contextual detection model for optical remote sensing targets[J]. Chinese Optics, 2020, 13(6): 1302-1313. doi: 10.37188/CO.2020-0057
Citation: ZHANG Rui-yan, JIANG Xiu-jie, AN Jun-she, CUI Tian-shu. Design of global-contextual detection model for optical remote sensing targets[J]. Chinese Optics, 2020, 13(6): 1302-1313. doi: 10.37188/CO.2020-0057

Design of global-contextual detection model for optical remote sensing targets

Funds:  Supported by Laboratory Fund of Key Laboratory of Electronics and Information Technology for Space Systems, CAS (No. Y42613A32S)
More Information
  • Corresponding author: jiangxj@nssc.ac.cn
  • Received Date: 07 Apr 2020
  • Rev Recd Date: 11 May 2020
  • Available Online: 22 Oct 2020
  • Publish Date: 01 Dec 2020
  • To improve the detection accuracy and reduce the complexity of optical remote sensing of target images with a complex background, a global context detection model based on optical remote sensing of targets is proposed. First, a feature encoder-feature decoder network is used for feature extraction. Then, to improve the positioning ability of multi-scale targets, a method that combines global-contextual features and target center local features is used to generate high-resolution heat maps. The global features are used to achieve the pre-classification of targets. Finally, a positioning loss function at different scales is proposed to enhance the regression ability of the model. Experimental results show that the mean average precision of the proposed model reaches 97.6% AP50 and 83.4% AP75 on the NWPU VHR-10 public remote sensing data set, and the speed reaches 16 PFS. This design can achieve an effective balance between accuracy and speed. It facilitates subsequent porting and application of the algorithm on the mobile device side, which meets design requirements.

     

  • loading
  • [1]
    许夙晖, 慕晓冬, 柯冰, 等. 基于遥感影像的军事阵地动态监测技术研究[J]. 遥感技术与应用,2014,29(3):511-516.

    XU S H, MU X D, KE B, et al. Dynamic monitoring of military position based on remote sensing image[J]. Remote Sensing Technology and Application, 2014, 29(3): 511-516. (in Chinese)
    [2]
    VALERO S, CHANUSSOT J, BENEDIKTSSON J A, et al. Advanced directional mathematical morphology for the detection of the road network in very high resolution remote sensing images[J]. Pattern Recognition Letters, 2010, 31(10): 1120-1127. doi: 10.1016/j.patrec.2009.12.018
    [3]
    DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2005: 886-893.
    [4]
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [5]
    LIU W, ANGUELOV D, ERHAN D, et al.. SSD: single shot multibox detector[C]. Proceedings of the 14th European Conference on Computer Vision, Springer, 2016: 21-37.
    [6]
    REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv: 1804.02767, 2018.
    [7]
    马永杰, 宋晓凤. 基于YOLO和嵌入式系统的车流量检测[J]. 液晶与显示,2019,34(6):613-618. doi: 10.3788/YJYXS20193406.0613

    MA Y J, SONG X F. Vehicle flow detection based on YOLO and embedded system[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 613-618. (in Chinese) doi: 10.3788/YJYXS20193406.0613
    [8]
    LIN T Y, GOYAL P, GIRSHICK R, et al.. Focal loss for dense object detection[C]. Proceedings of 2017 IEEE International Conference on Computer Vision, IEEE, 2017: 2999-3007.
    [9]
    LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 765-781.
    [10]
    ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[J]. arXiv: 1904.07850, 2019.
    [11]
    XIAO B, WU H P, WEI Y CH. Simple baselines for human pose estimation and tracking[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018: 472-487.
    [12]
    LI K, CHENG G, BU SH H, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337-2348. doi: 10.1109/TGRS.2017.2778300
    [13]
    MA W P, GUO Q Q, WU Y, et al. A novel multi-model decision fusion network for object detection in remote sensing images[J]. Remote Sensing, 2019, 11(7): 737. doi: 10.3390/rs11070737
    [14]
    梁华, 宋玉龙, 钱锋, 等. 基于深度学习的航空对地小目标检测[J]. 液晶与显示,2018,33(9):793-800. doi: 10.3788/YJYXS20183309.0793

    LIANG H, SONG Y L, QIAN F, et al. Detection of small target in aerial photography based on deep learning[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(9): 793-800. (in Chinese) doi: 10.3788/YJYXS20183309.0793
    [15]
    姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报,2019,39(11):1128002. doi: 10.3788/AOS201939.1128002

    YAO Q L, HU X, LEI H. Object detection in remote sensing images using multiscale convolutional neural networks[J]. Acta Optica Sinica, 2019, 39(11): 1128002. (in Chinese) doi: 10.3788/AOS201939.1128002
    [16]
    邓志鹏, 孙浩, 雷琳, 等. 基于多尺度形变特征卷积网络的高分辨率遥感影像目标检测[J]. 测绘学报,2018,47(9):1216-1227.

    DENG ZH P, SUN H, LEI L, et al. Object detection in remote sensing imagery with multi-scale deformable convolutional networks[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1216-1227. (in Chinese)
    [17]
    董潇潇, 何小海, 吴晓红, 等. 基于注意力掩模融合的目标检测算法[J]. 液晶与显示,2019,34(8):825-833. doi: 10.3788/YJYXS20193408.0825

    DONG X X, HE X H, WU X H, et al. Object detection algorithm based on attention mask fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(8): 825-833. (in Chinese) doi: 10.3788/YJYXS20193408.0825
    [18]
    WANG CH, BAI X, WANG SH, et al. Multiscale visual attention networks for object detection in VHR remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 310-314. doi: 10.1109/LGRS.2018.2872355
    [19]
    左俊皓, 赵聪, 朱晓龙, 等. Faster-RCNN和Level-Set结合的高分遥感影像建筑物提取[J]. 液晶与显示,2019,34(4):439-447. doi: 10.3788/YJYXS20193404.0439

    ZUO J H, ZHAO C, ZHU X L, et al. High-resolution remote sensing image building extraction combined with Faster-RCNN and Level-Set[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 439-447. (in Chinese) doi: 10.3788/YJYXS20193404.0439
    [20]
    于渊博, 张涛, 郭立红, 等. 卫星视频运动目标检测算法[J]. 液晶与显示,2017,32(2):138-143. doi: 10.3788/YJYXS20173202.0138

    YU Y B, ZHANG T, GUO L H, et al. Moving objects detection on satellite video[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(2): 138-143. (in Chinese) doi: 10.3788/YJYXS20173202.0138
    [21]
    LIU W, RABINOVICH A, BERG A C. Parsenet: looking wider to see better[J]. arXiv: 1506.04579, 2015.
    [22]
    ZHANG H, DANA K, SHI J P, et al.. Context encoding for semantic segmentation[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 7151-7160.
    [23]
    HE K M, ZHANG X Y, REN SH Q, et al.. Deep residual learning for image recognition[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
    [24]
    ZHU R, ZHANG SH F, WANG X B, et al.. ScratchDet: training single-shot object detectors from scratch[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2019: 2263-2272.
    [25]
    LIN M, CHEN Q, YAN SH CH. Network in network[J]. arXiv: 1312.4400, 2013.
    [26]
    CHENG G, ZHOU P CH, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. doi: 10.1109/TGRS.2016.2601622
    [27]
    XIA G S, BAI X, DING J, et al.. DOTA: a large-scale dataset for object detection in aerial images[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 3974-3983.
    [28]
    ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]. Proceedings of the 13th European Conference on Computer Vision, Springer, 2014: 818-833.
    [29]
    CHEN K, WANG J Q, PANG J M, et al.. MMDetection: open MMLab detection toolbox and benchmark[J]. arXiv: 1906.07155v1, 2019.
    [30]
    CHEN CH Y, GONG W G, CHEN Y L, et al. Object detection in remote sensing images based on a scene-contextual feature pyramid network[J]. Remote Sensing, 2019, 11(3): 339. doi: 10.3390/rs11030339
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article views(2176) PDF downloads(111) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return