Citation: | HUANG Yao, ZHAO Nan-jing, MENG De-shuo, ZUO Zhao-lu, CHENG Zhao, CHEN Yu-nan, CHEN Xiao-wei, GU Yan-hong. Study on quantitative methods of laser-induced two-dimensional fluorescence spectroscopy of multicomponent PAHs in soils[J]. Chinese Optics, 2020, 13(6): 1401-1410. doi: 10.37188/CO.2020-0059 |
[1] |
ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016, 25(1): 107-123. doi: 10.1016/j.ejpe.2015.03.011
|
[2] |
KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60: 71-80. doi: 10.1016/j.envint.2013.07.019
|
[3] |
ABBAS I, BADRAN G, VERDIN A, et al. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity[J]. Environmental Chemistry Letters, 2018, 16(2): 439-475. doi: 10.1007/s10311-017-0697-0
|
[4] |
ODABASI M, OZGUNERGE FALAY E, TUNA G, et al. Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region[J]. Environmental Science &Technology, 2015, 49(4): 2105-2114.
|
[5] |
BI X, LUO W, GAO J J, et al. Polycyclic aromatic hydrocarbons in soils from the Central-Himalaya region: distribution, sources, and risks to humans and wildlife[J]. Science of the Total Environment, 2016, 556: 12-22. doi: 10.1016/j.scitotenv.2016.03.006
|
[6] |
SUMAN S, SINHA A, TARAFDAR A. Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J]. Science of the Total Environment, 2016, 545-546: 353-360. doi: 10.1016/j.scitotenv.2015.12.061
|
[7] |
HUMEL S, SCHMIDT S N, SUMETZBERGER-HASINGER M, et al. Enhanced accessibility of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic PAHs in industrially contaminated soil after passive dosing of a competitive sorbate[J]. Environmental Science &Technology, 2017, 51(14): 8017-8026.
|
[8] |
KUŚMIERZ M, OLESZCZUK P, KRASKA P, et al. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil[J]. Chemosphere, 2016, 146: 272-279. doi: 10.1016/j.chemosphere.2015.12.010
|
[9] |
JONES K C, STRATFORD J A, TIDRIDGE P, et al. Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution[J]. Environmental Pollution, 1989, 56(4): 337-351. doi: 10.1016/0269-7491(89)90079-1
|
[10] |
SHANG Q B, QUAN Y H, XU L SH, et al. Spatial distribution and genesis of polycyclic aromatic hydrocarbons (PAHs) in the surface soil in China[J]. Journal of Ecology and Rural Environment, 2019, 35(7): 917-924.
|
[11] |
LI Y, CUI X, LI ZH CH, et al. Purification and enrichment of polycyclic aromatic hydrocarbons pollutions in oil-field water by column clean-up coupled with dispersive liquid-liquid microextraction[J]. Chinese Journal of Analytical Chemistry, 2018, 46(5): 787-795.
|
[12] |
WANG CH H, WU SH H, ZHOU SH L, et al. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils: a review[J]. Pedosphere, 2017, 27(1): 17-26. doi: 10.1016/S1002-0160(17)60293-5
|
[13] |
LI X L, LI Q X, AN SH Q, et al. Determination of fluorine in soil sample by X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11): 1864-1869.
|
[14] |
KANG Q W, ZHANG G, CHAI R T, et al. Synthesis of carbon nanodots for detection of aluminum ion with fluorescence enhancement[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1901-1908.
|
[15] |
LEE C K, KO E J, KIM K W, et al. Partial least square regression method for the detection of polycyclic aromatic hydrocarbons in the soil environment using laser-induced fluorescence spectroscopy[J]. Water,Air,and Soil Pollution, 2004, 158(1): 261-275. doi: 10.1023/B:WATE.0000044858.39836.e2
|
[16] |
OKPARANMA R N, MOUAZEN A M. Determination of total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) in soils: a review of spectroscopic and nonspectroscopic techniques[J]. Applied Spectroscopy Reviews, 2013, 48(6): 458-486. doi: 10.1080/05704928.2012.736048
|
[17] |
YANG R J, SHANG L P, BAO ZH B, et al. Feasibility of using laser-induced fluorescence to detect directly polycyclic aromatic hydrocarbons in soil[J]. Spectroscopy and Spectral Analysis, 2011, 31(8): 2148-2150.
|
[18] |
HE J, SHANG L P, DENG H, et al. Detection system of 250 nm laser induce fluorescence of polycyclic aromatic hydrocarbons in soil[J]. Opto-Electronic Engineering, 2014, 41(9): 51-55.
|
[19] |
SARKAR S K. Some multivariate linear regression testing problems with additional observations[J]. Journal of Multivariate Analysis, 1981, 11(4): 556-567. doi: 10.1016/0047-259X(81)90096-8
|
[20] |
BASAK D, PAL S, PATRANABIS D C. Support vector regression[J]. Neural Information Processing-Letters and Reviews, 2007, 11(10): 203-224.
|
[21] |
LU H X, XU M CH, ZHANG W D, et al. Identification of citrus Huanglongbing based on contractive auto-encoder combined extreme learning machine[J]. Chinese Journal of Analytical Chemistry, 2019, 47(5): 652-660.
|
[22] |
FENG Y, PENG CH Y, ZHANG SH W, et al. Preparation of graphene oxide grafted silica monolith and application in determination of polycyclic aromatic hydrocarbons[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 814-822.
|
[23] |
ZHAI M Y, ZHAO Y, GAO H, et al. Quantitative study on articular cartilage by fourier transform infrared spectroscopic imaging and support vector machine[J]. Chinese Journal of Analytical Chemistry, 2018, 46(6): 896-901.
|
[24] |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007
|
[25] |
ZHU A J, XU CH P, LI ZH, et al. Hybridizing grey wolf optimization with differential evolution for global optimization and test scheduling for 3D stacked SoC[J]. Journal of Systems Engineering and Electronics, 2015, 26(2): 317-328. doi: 10.1109/JSEE.2015.00037
|