Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
ZHANG Yong-tang. Photon-assisted Fano resonance tunneling periodic double-well potential characteristics[J]. Chinese Optics, 2021, 14(5): 1251-1258. doi: 10.37188/CO.2020-0068
Citation: ZHANG Yong-tang. Photon-assisted Fano resonance tunneling periodic double-well potential characteristics[J]. Chinese Optics, 2021, 14(5): 1251-1258. doi: 10.37188/CO.2020-0068

Photon-assisted Fano resonance tunneling periodic double-well potential characteristics

Funds:  Supported by National Natural Science Foundation of China (No. 61663029); Key Platform and Characteristic Innovation Project for Universities of Guangdong Province (No. 2020KTSCX171)
More Information
  • Author Bio:

    Zhang Yong-tang (1981—), male, born in Nanchang, Jiangxi Province. He is a doctor, Professor and master supervisor. He obtained his doctor's degree from Xiamen University in 2018, He is mainly engaged in the research of optical communication and network security perception. Email: gov211@163.com

  • Corresponding author: gov211@163.com
  • Received Date: 21 Apr 2020
  • Rev Recd Date: 08 Jun 2020
  • Available Online: 21 Jun 2021
  • Publish Date: 18 Sep 2021
  • Optical properties of periodic double-well potential are one of the frontier research fields in laser physics and quantum optics. In this work, we have employed time-periodic double-well potential for the investigation of Fano-type resonant tunneling of photon-assisted Dirac electrons in a graphene system. Using a double quantum well structure, it is found that the resonant tunneling of electrons in a thin barrier between the two quantum wells splits the bound state energy levels, and the Fano-type resonance spectrum splits into two asymmetric resonance peaks. The shape of Fano peak is regulated by changing the phase, frequency, and amplitude, that can directly modulate the electronic transport properties of Dirac in graphene. Our numerical analysis shows that the relative phase of two oscillating fields can adjust the shape of the asymmetric Fano type resonance peak. When the relative phase increases from 0 to ${\text{π}}$, the resonance peak valley moves from one side of the peak to the other. In addition, the asymmetric resonance peak becomes symmetric at critical phase ${{3{\text{π}} }/{11}}$. Furthermore, the distribution of Fano peaks can be modulated by varying the frequency and amplitude of oscillating field and the structure of the static potential well. Finally, we suggest that these interesting physical properties can be used for the modulation of Dirac electron transport properties in graphene.

     

  • loading
  • [1]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. doi: 10.1038/nature04233
    [2]
    NOVOSELOV K S, MOROZOV S V, MOHINDDIN T M G, et al. Electronic properties of graphene[J]. Physica Status Solidi (B), 2007, 244(11): 4106-4111. doi: 10.1002/pssb.200776208
    [3]
    ZHANG H J, LEE G, GONG CH, et al. Grain boundary effect on electrical transport properties of graphene[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2338-2343. doi: 10.1021/jp411464w
    [4]
    SEMENOFF G W. Condensed-matter simulation of a three-dimensional anomaly[J]. Physical Review Letters, 1984, 53(26): 2449-2452. doi: 10.1103/PhysRevLett.53.2449
    [5]
    LI T, DUCA L, REITTER M, et al. Bloch state tomography using wilson lines[J]. Science, 2016, 352(6289): 1094-1097. doi: 10.1126/science.aad5812
    [6]
    RUSIN T M, ZAWADZKI W. Trembling motion (Zitterbewegung) of electrons in semiconductors[J]. AIP Conference Proceedings, 2007, 893(1): 135.
    [7]
    ZAWADZKI W, RUSIN T M. Nature of electron zitterbewegung in crystalline solids[J]. Physics Letters A, 2010, 374(34): 3533-3537. doi: 10.1016/j.physleta.2010.06.028
    [8]
    ALLAIN P E, FUCHS J N. Klein tunneling in graphene: optics with massless electrons[J]. The European Physical Journal B, 2011, 83(3): 301-317. doi: 10.1140/epjb/e2011-20351-3
    [9]
    LEO S D, ROTELLI P P. Barrier paradox in the klein zone[J]. Physical Review A, 2006, 73(4): 042107. doi: 10.1103/PhysRevA.73.042107
    [10]
    LEO S D, ROTELLI P P. Dirac equation studies in the tunneling energy zone[J]. The European Physical Journal C, 2007, 51(1): 241-247. doi: 10.1140/epjc/s10052-007-0297-4
    [11]
    DAS SARMA S, ADAM S, HWANG E H, et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 2011, 83(2): 407-470. doi: 10.1103/RevModPhys.83.407
    [12]
    ZHANG Y T. Coherent perfect absorption and transmission of a generalized three-mode cavity optico-mechanical system[J]. Acta Physica Sinica, 2017, 66(10): 107101. (in Chinese) doi: 10.7498/aps.66.107101
    [13]
    ZHU Y G, FANG Y T. Design of absorber at visible frequencies based on compound structure of one-dimensional photonic crystal and graphene[J]. Chinese Journal of Luminescence, 2019, 40(11): 1394-1400. (in Chinese) doi: 10.3788/fgxb20194011.1394
    [14]
    KUSMARTSEV F V, WU W M, PIERPOINT M P, et al. . Application of graphene within optoelectronic devices and transistors[M]. MISRA P. Applied Spectroscopy and the Science of Nanomaterials. Singapore: Springer, 2015: 191-221.
    [15]
    ZHANG Y T. Coherent optical effect of a nano cavity optico-mechanical system[J]. Acta Photonica Sinica, 2018, 47(10): 1027002. (in Chinese) doi: 10.3788/gzxb20184710.1027002
    [16]
    ZHANG ZH Y. One-piece flow target type based on fiber bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
    [17]
    RODRIGUES J N B. Intervalley scattering of graphene massless Dirac fermions at 3-periodic grain boundaries[J]. Physical Review B, 2016, 94(13): 134201. doi: 10.1103/PhysRevB.94.134201
    [18]
    ZHANG SH H, YANG W, PEETERS F M. Veselago focusing of anisotropic massless Dirac fermions[J]. Physical Review B, 2018, 97(20): 205437. doi: 10.1103/PhysRevB.97.205437
    [19]
    LE H A, HO S T, NGUYEN D C, et al. Optical properties of graphene superlattices[J]. Journal of Physics:Condensed Matter, 2014, 26(40): 405304. doi: 10.1088/0953-8984/26/40/405304
    [20]
    MIRYALA S, OLEIRO M, PÖHLS L M B, et al. Modeling of physical defects in PN junction based graphene devices[J]. Journal of Electronic Testing, 2014, 30(3): 357-370. doi: 10.1007/s10836-014-5458-4
    [21]
    ZHANG Y T, XIAN M Y. Research on thermal effects of mid-infrared 2 μm Tm: YLF laser[J]. Laser &Infrared, 2017, 47(7): 813-816. (in Chinese) doi: 10.3969/j.issn.1001-5078.2017.07.005
    [22]
    YANG ZH G, ZHOU J, HUANG H. Solar vector measurement algorithm based on multiple polarization sensors[J]. Acta Photonica Sinica, 2018, 47(2): 0212001. (in Chinese) doi: 10.3788/gzxb20184702.0212001
    [23]
    ZHANG Y Q, DOU X J, DAI Y M, et al. All-optical manipulation of micrometer-sized metallic particles[J]. Photonics Research, 2018, 6(2): 66-71. doi: 10.1364/PRJ.6.000066
    [24]
    WANG X, ZHAO Y H, DING Y H, et al. Tunable optical delay line based on integrated grating-assisted contradirectional couplers[J]. Photonics Research, 2018, 6(9): 880-886. doi: 10.1364/PRJ.6.000880
    [25]
    KANG Y H, RUAN H, CLAUS R O, et al. Observation of quantized and partial quantized conductance in polymer-suspended graphene nanoplatelets[J]. Nanoscale Research Letters, 2016, 11(1): 179. doi: 10.1186/s11671-016-1387-8
    [26]
    KRINNER S, STADLER D, HUSMANN D, et al. Observation of quantized conductance in neutral matter[J]. Nature, 2015, 517(7532): 64-67. doi: 10.1038/nature14049
    [27]
    MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J]. Review of Modern Physics, 2010, 82(3): 2257-2298. doi: 10.1103/RevModPhys.82.2257
    [28]
    DAYEM A H, MARTIN R J. Quantum interaction of microwave radiation with tunneling between superconductors[J]. Physical Review Letters, 1962, 8(6): 246-248. doi: 10.1103/PhysRevLett.8.246
    [29]
    PESTOV E E, LEVITCHEV M Y, KLUSHIN A M. On the cryocooler-based cooling of josephson microchips fabricated from cuprate superconductors for use in voltage standards[J]. Journal of Surface Investigation. X-ray,Synchrotron and Neutron Techniques, 2016, 10(2): 302-306. doi: 10.1134/S1027451016020154
    [30]
    MENDES U C, MORA C. Cavity squeezing by a quantum conductor[J]. New Journal of Physics, 2015, 17(11): 113014. doi: 10.1088/1367-2630/17/11/113014
    [31]
    ARPAIA R, EJRNAES M, PARLATO L, et al. High-temperature superconducting nanowires for photon detection[J]. Physica C:Superconductivity and Its Applications, 2015, 509: 16-21. doi: 10.1016/j.physc.2014.09.017
    [32]
    WU J J, YOU L X, CHEN S J, et al. Improving the timing jitter of a superconducting nanowire single-photon detection system[J]. Applied Optics, 2017, 56(8): 2195-2200. doi: 10.1364/AO.56.002195
    [33]
    NAJAFI F, MARSILI F, VERMA V B, et al.. Superconducting nanowire architectures for single photon detection[M]. HADFIELD R H, JOHANSSON G. Superconducting Devices in Quantum Optics. Cham: Springer, 2016.
    [34]
    XU R Y, LI Y CH, ZHENG F, et al. Demonstration of a superconducting nanowire single photon detector with an ultrahigh polarization extinction ratio over 400[J]. Optics Express, 2018, 26(4): 3947-3955. doi: 10.1364/OE.26.003947
    [35]
    LI H, CHEN S J, YOU L X, et al. Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging[J]. Optics Express, 2016, 24(4): 3535-3542. doi: 10.1364/OE.24.003535
    [36]
    YAO W, CUI P, HU X Q. Electrochemiluminescent aptasensor based on signal enhancement for determination of adenosine triphosphate[J]. Chinese Journal of Luminescence, 2020, 41(6): 744-752. (in Chinese)
    [37]
    YOGI P, POONIA D, MISHRA S, et al. Spectral anomaly in Raman scattering from p-type silicon nanowires[J]. The Journal of Physical Chemistry C,, 2017, 121(9): 5372-5378. doi: 10.1021/acs.jpcc.6b12811
    [38]
    ZHANG Y T. Erbium-doped fiber laser based on the noise-like square wave pulse[J]. Acta Photonica Sinica, 2017, 46(6): 0614002. (in Chinese) doi: 10.3788/gzxb20174606.0614002
    [39]
    ZHAO Z ZH, CAO Y D, GARCÍA R E. Kinetically stabilized metastable polarization states in ferroelectric ceramics[J]. Journal of the European Ceramic Society, 2017, 37(2): 573-581. doi: 10.1016/j.jeurceramsoc.2016.08.022
    [40]
    WANG H B, TAO J, LV J G, et al. Absorption enhancement of silicon via localized surface plasmons resonance in blue band[J]. Chinese Optics, 2020, 13(6): 1362-1384. (in Chinese) doi: 10.37188/CO.2020-0056
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(960) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return