Volume 13 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
ZHANG Bo-yan, KONG De-zhu, LIU Jin-guo, WU Xing-xing, DONG De-yi. Compensation of star image motion for a CMOS image sensor with a rolling shutter[J]. Chinese Optics, 2020, 13(6): 1276-1284. doi: 10.37188/CO.2020-0089
Citation: ZHANG Bo-yan, KONG De-zhu, LIU Jin-guo, WU Xing-xing, DONG De-yi. Compensation of star image motion for a CMOS image sensor with a rolling shutter[J]. Chinese Optics, 2020, 13(6): 1276-1284. doi: 10.37188/CO.2020-0089

Compensation of star image motion for a CMOS image sensor with a rolling shutter

Funds:  Supported by National Key Research and Development Program (No. 2016YFB0500100, No. 2016YFB0501002); National Natural Science Foundation of China (No. 11873007)
More Information
  • Corresponding author: boyan1021@163.com
  • Received Date: 09 May 2020
  • Rev Recd Date: 15 Jun 2020
  • Available Online: 29 Oct 2020
  • Publish Date: 01 Dec 2020
  • According to the imaging principles and characteristics of a shutter CMOS image sensor, the shutter effect introduced by a shutter CMOS image detector operating on a star map is analyzed, and an image shift compensation method is proposed to rectify the image distortion introduced by this kind of imaging method. With the known frame frequency of the star images and the exposure time interval of the adjacent rows of the CMOS graphic sensor, this method can achieve high-speed calculation of star motion by extracting and matching the centroid of the star points in an adjacent star map. The centroid of the star points in a global image is calculated by combining the speed value with the row exposure time interval of the CMOS image sensor. The effect of the algorithm is tested on actual star images. The experimental results show that with the compensated star map, angle errors between the star sensors are smaller than 0.5″ when a satellite is in non-maneuver mode, and angle errors between either of the star sensors are about 0.6″ when the satellite is in maneuver mode. The experimental results not only prove the effectiveness of the algorithm, but also broaden the applications of shutter CMOS detectors to some extent, especially in aerospace engineering.

     

  • loading
  • [1]
    SUN ZH Y, ZHANG D, FANG W. An ASIC chip with pipeline ADCs for CCD sensor imaging system[J]. Sensors and Actuators A:Physical, 2018, 279: 284-292. doi: 10.1016/j.sna.2018.06.014
    [2]
    孙振亚, 刘栋斌, 方伟, 等. 高密度模块化TDI CCD成像系统设计[J]. 红外与激光工程,2018,47(6):0618001. doi: 10.3788/IRLA201847.0618001

    SUN ZH Y, LIU D B, FANG W, et al. Design of high density modularity TDI CCD imaging system[J]. Infrared and Laser Engineering, 2018, 47(6): 0618001. (in Chinese) doi: 10.3788/IRLA201847.0618001
    [3]
    宁永慧, 郭汉洲, 余达, 等. 基于LM98640的TDI-CCD暗场扣除方法[J]. 液晶与显示,2019,34(6):592-597. doi: 10.3788/YJYXS20193406.0592

    NING Y H, GUO H ZH, YU D, et al. Dark field deduction method of TDI--CCD based on LM98640[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 592-597. (in Chinese) doi: 10.3788/YJYXS20193406.0592
    [4]
    杨成财, 鞠国豪, 陈永平. 集成PIN光敏元的CMOS探测器光电响应特性研究[J]. 中国光学,2019,12(5):1076-1089. doi: 10.3788/co.20191205.1076

    YANG CH C, JU G H, CHEN Y P. Study on the photo response of a CMOS sensor integrated with PIN photodiodes[J]. Chinese Optics, 2019, 12(5): 1076-1089. (in Chinese) doi: 10.3788/co.20191205.1076
    [5]
    张军亮, 戚涛, 李晖, 等. 基于GL0816传感器的高速线阵CMOS相机系统设计[J]. 液晶与显示,2019,34(1):24-32. doi: 10.3788/YJYXS20193401.0024

    ZHANG J L, QI T, LI H, et al. Design of high speed linear CMOS camera system based on GL0816 sensor[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(1): 24-32. (in Chinese) doi: 10.3788/YJYXS20193401.0024
    [6]
    PARK J, LEE Y, KIM B, et al. Pixel technology for improving IR quantum efficiency of backside-illuminated CMOS image sensor[J]. International Image Sensor Society,2019,4(R14):1-4.
    [7]
    XU CH, MO Y W, REN G J, et al. . A stacked global-shutter CMOS imager with SC-Type hybrid-GS pixel and self-knee point calibration single frame HDR and on-chip binarization algorithm for smart vision applications[C]. Proceedings of 2019 IEEE International Solid- State Circuits Conference, IEEE, 2019: 94-96.
    [8]
    KOBAYASHI M, SEKINE H, MIKI T, et al. A 3.4μm pixel pitch global shutter CMOS image sensor with dual in-pixel charge domain memory[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBL02. doi: 10.7567/1347-4065/ab00f3
    [9]
    XU J T, SHI X L, NIE K M, et al. A global shutter high speed TDI CMOS image sensor with pipelined charge transfer pixel[J]. IEEE Sensors Journal, 2018, 18(7): 2729-2736. doi: 10.1109/JSEN.2018.2800743
    [10]
    刘智, 柴华, 李娜娜. CMOS图像传感器中卷帘式快门特性及其应用[J]. 光学 精密工程,2009,17(8):2017-2023.

    LIU ZH, CHAI H, LI N N. Shutter mode of CMOS image sensor and its application[J]. Optics and Precision Engineering, 2009, 17(8): 2017-2023. (in Chinese)
    [11]
    张惠宇宸, 贺小军, 苏志强. 卷帘数字域TDI技术的CMOS成像系统的SNR模型建立[J]. 长春理工大学学报(自然科学版),2018,41(4):68-72.

    ZHANG H Y CH, HE X J, SU ZH Q. SNR model building of CMOS imaging system of rolling digital domain TDI technology[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(4): 68-72. (in Chinese)
    [12]
    HERNANDEZ-PALACIOS J, RANDEBERG L L. Intercomparison of EMCCD- and sCMOS-based imaging spectrometers for biomedical applications in low-light conditions[J]. Proceedings of SPIE, 2012, 8215: 82150Q. doi: 10.1117/12.909680
    [13]
    贾永丹, 王伟之, 孙建, 等. 高精度星相机光学系统像质评价及实现[J]. 空间控制技术与应用,2018,44(3):43-49.

    JIA Y D, WANG W ZH, SUN J. Evaluation and implementation of image quality in high-precision star camera optical system[J]. Aerospace Control and Application, 2018, 44(3): 43-49. (in Chinese)
    [14]
    VAN BEZOOIJEN R W H. SIRTF autonomous star tracker[J]. Proceedings of SPIE, 2003, 4850: 108-121. doi: 10.1117/12.461606
    [15]
    ZHANG P, ZHAO Q L, LIU J N, et al. A brightness-referenced star identification algorithm for APS star tracker[J]. Sensors, 2014, 14(10): 18498-18514. doi: 10.3390/s141018498
    [16]
    LI J, WEI X G, ZHANG G J. Iterative algorithm for autonomous star identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 536-547. doi: 10.1109/TAES.2014.130729
    [17]
    ZHU X F, WU F, XU Q G. A fast star image extraction algorithm for autonomous star sensors[J]. Proceedings of SPIE, 2012, 8558: 855821. doi: 10.1117/12.999641
    [18]
    赵战民, 朱占龙, 王军芬. 改进的基于灰度级的模糊C均值图像分割算法[J]. 液晶与显示,2020,35(5):499-507. doi: 10.3788/YJYXS20203505.0499

    ZHAO ZH M, ZHU ZH L, WANG J F. Improved fuzzy C-means algorithm based on gray-level for image segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(5): 499-507. (in Chinese) doi: 10.3788/YJYXS20203505.0499
    [19]
    黄冠婷, 韩学辉, 龚晓婷, 等. 基于图像分割和区域匹配的灰度图像彩色化算法[J]. 液晶与显示,2019,34(6):619-626. doi: 10.3788/YJYXS20193406.0619

    HUANG G T, HAN X H, GONG X T, et al. Gray image colorization algorithm based on image segmentation and region matching[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(6): 619-626. (in Chinese) doi: 10.3788/YJYXS20193406.0619
    [20]
    BOLELLI F, CANCILLA M, BARALDI L, et al. Toward reliable experiments on the performance of connected components labeling algorithms[J]. Journal of Real-Time Image Processing, 2020, 17(2): 229-244. doi: 10.1007/s11554-018-0756-1
    [21]
    王海涌, 费峥红, 王新龙. 基于高斯分布的星像点精确模拟及质心计算[J]. 光学 精密工程,2009,17(7):1672-1677.

    WANG H Y, FEI ZH H, WANG X L. Precise simulation of star spots and centroid calculation based on Gaussian distribution[J]. Optics and Precision Engineering, 2009, 17(7): 1672-1677. (in Chinese)
    [22]
    WANG H Y, XU E SH, LI ZH F, et al. Gaussian analytic centroiding method of star image of star tracker[J]. Advances in Space Research, 2015, 56(10): 2196-2205. doi: 10.1016/j.asr.2015.08.027
    [23]
    王苹. 高精度视频配准算法中的静态图像配准算法[J]. 液晶与显示,2020,35(6):612-618.

    WANG P. Static image registration algorithm in high-precision video registration algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(6): 612-618. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article views(1735) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return