Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
ZHOU Wen-zhou, FAN Chen, HU Xiao-ping, HE Xiao-feng, ZHANG Li-lian. Multi-scale singular value decomposition polarization image fusion defogging algorithm and experiment[J]. Chinese Optics, 2021, 14(2): 298-306. doi: 10.37188/CO.2020-0099
Citation: ZHOU Wen-zhou, FAN Chen, HU Xiao-ping, HE Xiao-feng, ZHANG Li-lian. Multi-scale singular value decomposition polarization image fusion defogging algorithm and experiment[J]. Chinese Optics, 2021, 14(2): 298-306. doi: 10.37188/CO.2020-0099

Multi-scale singular value decomposition polarization image fusion defogging algorithm and experiment

Funds:  Supported by National Natural Science Foundation of China (No. 61773394); National University of Defense Technology Research Program (No. ZK18-03-24)
More Information
  • Corresponding author: fanchen@nudt.edu.cn
  • Received Date: 01 Jun 2020
  • Rev Recd Date: 13 Jul 2020
  • Available Online: 05 Feb 2021
  • Publish Date: 23 Mar 2021
  • Aiming at the problems that the robust of existing polarization defogging algorithms is poor and image enhancement abilities are limited, an image fusion defogging algorithm based on Multi-scale Singular Value Decomposition (MSVD) is proposed. Firstly, considering the redundancy in polarization measurement information, the least square method is used to improve the accuracy of the polarization information in the traditional defogging algorithm for polarized images; then, with respect to the limitations of that algorithm, a qualitative analysis of the feasibility of image fusion defogging is implemented, and a polarized image fusion defogging algorithm based on multi-scale singular value decomposition is proposed. Finally, a verification experiment under different visibility conditions is designed and quantified. The results show that compared with the classic polarized image defogging algorithm, this algorithm does not require manual parameter adjustment, it has strong adaptability and robustness, and can effectively improve the halos and overexposure of sky areas that occur in the traditional algorithm. The image information entropy and the average gradient can be increased by 18.9% and 38.4% respectively, which effectively improves the quality of visual imaging under complex lighting conditions. The proposed algorithm has great application prospects.

     

  • loading
  • [1]
    PATEL S P, NAKRANI M. A review on methods of image dehazing[J]. International Journal of Computer Applications, 2016, 133(12): 44-49. doi: 10.5120/ijca2016908076
    [2]
    FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 547-555.
    [3]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. doi: 10.1109/TPAMI.2010.168
    [4]
    邓莉. 针对明亮区域的自适应全局暗原色先验去雾[J]. 光学 精密工程,2016,24(4):892-901. doi: 10.3788/OPE.20162404.0892

    DENG L. Adaptive image dehazing for bright areas based on global dark channel prior[J]. Optics and Precision Engineering, 2016, 24(4): 892-901. (in Chinese) doi: 10.3788/OPE.20162404.0892
    [5]
    杨燕, 刘珑珑, 张得欣, 等. 结合自适应雾气估计的快速单幅图像去雾[J]. 光学 精密工程,2019,27(10):2263-2271. doi: 10.3788/OPE.20192710.2263

    YANG Y, LIU L L, ZHANG D X, et al. Fast single image dehazing combined with adaptive haze estimation[J]. Optics and Precision Engineering, 2019, 27(10): 2263-2271. (in Chinese) doi: 10.3788/OPE.20192710.2263
    [6]
    杨燕, 张国强, 姜沛沛. 结合景深估计的高斯衰减与自适应补偿去雾[J]. 光学 精密工程,2019,27(11):2439-2449. doi: 10.3788/OPE.20192711.2439

    YANG Y, ZHANG G Q, JIANG P P. Gaussian decay and adaptive compensation dehazing algorithm combined with scene depth estimation[J]. Optics and Precision Engineering, 2019, 27(11): 2439-2449. (in Chinese) doi: 10.3788/OPE.20192711.2439
    [7]
    CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. doi: 10.1109/TIP.2016.2598681
    [8]
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511-525. doi: 10.1364/AO.42.000511
    [9]
    MUDGE J, VIRGEN M. Real time polarimetric dehazing[J]. Applied Optics, 2013, 52(9): 1932-1938. doi: 10.1364/AO.52.001932
    [10]
    NAMER E, SHWARTZ S, SCHECHNER Y Y. Skyless polarimetric calibration and visibility enhancement[J]. Optics Express, 2009, 17(2): 472-493. doi: 10.1364/OE.17.000472
    [11]
    SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant dehazing of images using polarization[C]. Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2003.
    [12]
    LIANG J, REN L Y, QU E SH, et al. Method for enhancing visibility of hazy images based on polarimetric imaging[J]. Photonics Research, 2014, 2(1): 38-44. doi: 10.1364/PRJ.2.000038
    [13]
    曾佳. 基于大气散射模型的雾天图像复原方法研究[D]. 合肥: 合肥工业大学, 2015.

    ZENG J. Research of fog-degraded image restoration method based on the atmospheric scattering model[D]. Hefei: Hefei University of Technology, 2015. (in Chinese).
    [14]
    FAN CH, HU X P, LIAN J X, et al. Design and calibration of a novel camera-based bio-inspired polarization navigation sensor[J]. IEEE Sensors Journal, 2016, 16(10): 3640-3648. doi: 10.1109/JSEN.2016.2533628
    [15]
    FANG S, XIA X S, HUO X, et al. Image dehazing using polarization effects of objects and airlight[J]. Optics Express, 2014, 22(16): 19523-19537. doi: 10.1364/OE.22.019523
    [16]
    高隽, 毕冉, 赵录建. 利用偏振信息的雾天图像全局最优重构[J]. 光学 精密工程,2017,25(8):2212-2220. doi: 10.3788/OPE.20172508.2212

    GAO J, BI R, ZHAO L J. Global optimized hazed image reconstruction based on polarization information[J]. Optics and Precision Engineering, 2017, 25(8): 2212-2220. (in Chinese) doi: 10.3788/OPE.20172508.2212
    [17]
    汪晓波, 刘斌. 基于多分辨奇异值分解的多聚焦图像融合[J]. 量子电子学报,2014,31(3):257-263.

    WANG X B, LIU B. Multi-focus image fusion based on multi-resolution singular value decomposition[J]. Chinese Journal of Quantum Electronics, 2014, 31(3): 257-263. (in Chinese)
    [18]
    BURT P J, ADELSON E H. The Laplacian pyramid as a Compact image code[J]. Reading in Computer Vision, 1987, 31(4): 671-679.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article views(2187) PDF downloads(233) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return