Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
QIU Hong-wei, JIN Chun-shui, YU Jie, LIU Yu, ZHANG Hai-tao, WANG Li-ping, SUN Shi-zhuang. CGH encoding with variable step size search[J]. Chinese Optics, 2021, 14(2): 368-374. doi: 10.37188/CO.2020-0124
Citation: QIU Hong-wei, JIN Chun-shui, YU Jie, LIU Yu, ZHANG Hai-tao, WANG Li-ping, SUN Shi-zhuang. CGH encoding with variable step size search[J]. Chinese Optics, 2021, 14(2): 368-374. doi: 10.37188/CO.2020-0124

CGH encoding with variable step size search

doi: 10.37188/CO.2020-0124
Funds:  Supported by Local Standards of Jilin Province (No. DB22/T2651-2017)
More Information
  • Corresponding author: jincs@sklao.ac.cn
  • Received Date: 14 Jul 2020
  • Rev Recd Date: 12 Aug 2020
  • Available Online: 08 Mar 2021
  • Publish Date: 23 Mar 2021
  • In the field of aspheric testing, Computer-Generated Hologram (CGH) technology has been widely used. For CGH encoding, when applying the conventional encoding method to achieve highly accurate coding, it will use an amount of data that is often up to tens or even hundreds of GB. Therefore, in order to achieve high encoding accuracy with a small amount of encoded data, we propose a variable step size CGH encoding method. This method first obtains CGH fringe distribution through finding isophase surface, then selects different sampling steps by calculating the phase distribution gradient so that the CGH achieves high precision coding using as few points as possible. Finally, the method was used to CGH encode, then the resulting CGH was manufactured to test an aspheric surface. The test result is 3.142 nm (RMS). In order to verify the credibility of the test results, we design and make a compensator to test the same aspheric surface. The test result is 3.645 nm (RMS). The difference between the two results is 1.291 nm (RMS), and shows that the encoding method can meet the requirements of high-precision testing of aspheric surfaces.

     

  • loading
  • [1]
    高松涛, 隋永新, 杨怀江. 用计算全息图对非球面的高精度检测与误差评估[J]. 光学学报,2013,33(6):0612003. doi: 10.3788/AOS201333.0612003

    GAO S T, SUI Y X, YANG H J. High precise testing of asphere with computer-generated hologram and error evaluation[J]. Acta Optica Sinica, 2013, 33(6): 0612003. (in Chinese) doi: 10.3788/AOS201333.0612003
    [2]
    ZHANG H D, WANG X K, XUE D L, et al. Modified surface testing method for large convex aspheric surfaces based on diffraction optics[J]. Applied Optics, 2017, 56(34): 9398-9405. doi: 10.1364/AO.56.009398
    [3]
    何宇航, 李强, 高波, 等. 基于计算全息元件的大口径非球面透镜透射波前检测方法[J]. 激光与光电子学进展,2019,56(2):021202.

    HE Y H, LI Q, GAO B, et al. Measurement of the transmission wavefront of a large-aperture aspheric lens based on computer-generated hologram[J]. Laser &Optoelectronics Progress, 2019, 56(2): 021202. (in Chinese)
    [4]
    闫公敬, 张宪忠. 非零位凸非球面自控精拼接检测技术研究[J]. 中国光学,2018,11(5):798-803. doi: 10.3788/CO.20181105.0798

    YAN G J, ZHANG X ZH. Research on non-null convex aspherical sub-aperture stitching detection technology[J]. Chinese Optics, 2018, 11(5): 798-803. (in Chinese) doi: 10.3788/CO.20181105.0798
    [5]
    高松涛. 超高精度非球面自控精拼接检测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2014.

    GAO S T. Research on ultra-precise aspheric surface testing[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014. (in Chinese).
    [6]
    彭建涛. 基于计算全息的拼接式大口径光学系统检测与共相技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    PENG J T. Research on the optical testing and Co-phasing technology for large aperture segmented mirror systems based on computer-generated holograms[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017. (in Chinese).
    [7]
    张海东, 王孝坤, 薛栋林, 等. 一种针对超大口径凸非球面的面形检测方法[J]. 中国光学,2019,12(5):1147-1154. doi: 10.3788/CO.20191205.1147

    ZHANG H D, WANG X K, XUE D L, et al. Surface testing method for ultra-large convex aspheric surfaces[J]. Chinese Optics, 2019, 12(5): 1147-1154. (in Chinese) doi: 10.3788/CO.20191205.1147
    [8]
    XIAO X SH, YU Q H, ZHU ZH T, et al. Encoding method of CGH for highly accurate optical measurement based on non-maxima suppression[J]. Chinese Optics Letters, 2017, 15(11): 111201. doi: 10.3788/COL201715.111201
    [9]
    虞祖良, 金国藩. 计算机制全息图[M]. 北京: 清华大学出版社, 1984.

    YU Z L, JIN G F. Computer-Generated Hologram[M]. Beijing: Tsinghua University Press, 1984. (in Chinese)
    [10]
    JIAO F, DAVID Z, URQUHART K S, et al. Efficient encoding algorithms for computer-aided design of diffractive optical elements by the use of electron-beam fabrication[J]. Applied Optics, 1995, 34(14): 2522-2533. doi: 10.1364/AO.34.002522
    [11]
    MA J, GAO Z S, ZHU R H, et al. Problems on fabrication of computer-generated holograms for testing aspheric surfaces[J]. Chinese Optics Letters, 2009, 7(1): 70-73. doi: 10.3788/COL20090701.0070
    [12]
    CAI W R, ZHOU Z, ZHAO CH Y, et al. Analysis of wavefront errors introduced by encoding computer-generated holograms[J]. Applied Optics, 2013, 52(34): 8324-8331. doi: 10.1364/AO.52.008324
    [13]
    DHARMAVARAPU R, BHATTACHARYA S, JUODKAZIS S. GDOESII: software for design of diffractive optical elements and phase mask conversion to GDS II lithography files[J]. SoftwareX, 2019, 9: 126-131. doi: 10.1016/j.softx.2019.01.012
    [14]
    尹放, 尹冀波. CIF和GDSⅡ格式版图数据的直接转换[J]. 微处理机,2001(3):14-15, 19. doi: 10.3969/j.issn.1002-2279.2001.03.005

    YIN F, YIN J B. The direct conversion for CIF and GDSⅡ[J]. Microprocessors, 2001(3): 14-15, 19. (in Chinese) doi: 10.3969/j.issn.1002-2279.2001.03.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(1359) PDF downloads(118) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return