Citation: | ZHANG Lei, WU Jin-ling, LIU Ren-hu, YU Ben-li. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. doi: 10.37188/CO.2020-0126 |
[1] |
REIMERS J, BAUER A, THOMPSON K P, et al. Freeform spectrometer enabling increased compactness[J]. Light:Science &Applications, 2017, 6(7): e17026.
|
[2] |
王欣, 刘强, 舒嵘. 大视场快焦比施密特系统在星载光谱仪中的应用[J]. 光学 精密工程,2019,27(3):533-541. doi: 10.3788/OPE.20192703.0533
WANG X, LIU Q, SHU R. Application of Schmidt optical system with wide-field of view and fast focal ratio to aerospace imaging spectrometer[J]. Optics and Precision Engineering, 2019, 27(3): 533-541. (in Chinese) doi: 10.3788/OPE.20192703.0533
|
[3] |
BAUER A, SCHIESSER E M, ROLLAND J P. Starting geometry creation and design method for freeform optics[J]. Nature Communications, 2018, 9(1): 1756. doi: 10.1038/s41467-018-04186-9
|
[4] |
YANG T, JIN G F, ZHU J. Automated design of freeform imaging systems[J]. Light:Science &Applications, 2017, 6(10): e17081.
|
[5] |
赵星, 肖流长, 张赞, 等. 基于面形斜率的高斯径向基自由曲面优化设计及公差分析[J]. 光学 精密工程,2019,27(12):2499-2508. doi: 10.3788/OPE.20192712.2499
ZHAO X, XIAO L CH, ZHANG Z, et al. Optimization and tolerance analysis of freeform surface using Gaussian RBF-Slope model[J]. Optics and Precision Engineering, 2019, 27(12): 2499-2508. (in Chinese) doi: 10.3788/OPE.20192712.2499
|
[6] |
GISSIBL T, THIELE S, HERKOMMER A, et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres[J]. Nature Communications, 2016, 7(1): 11763. doi: 10.1038/ncomms11763
|
[7] |
HONG ZH H, LIANG R G. IR-laser assisted additive freeform optics manufacturing[J]. Scientific Reports, 2017, 7(1): 7145. doi: 10.1038/s41598-017-07446-8
|
[8] |
徐领娣, 房安利, 于建海, 等. 微晶材质自由曲面反射镜精密超声铣磨加工技术[J]. 光学 精密工程,2019,27(12):2564-2570. doi: 10.3788/OPE.20192712.2564
XU L D, FANG A L, YU J H, et al. Ultrasonic-vibration assisted grinding of a zerodour freeform optical mirror[J]. Optics and Precision Engineering, 2019, 27(12): 2564-2570. (in Chinese) doi: 10.3788/OPE.20192712.2564
|
[9] |
GREIVENKAMP J E, GAPPINGER R O. Design of a nonnull interferometer for aspheric wave fronts[J]. Applied Optics, 2004, 43(27): 5143-5151. doi: 10.1364/AO.43.005143
|
[10] |
HAO Q, WANG SH P, HU Y, et al. Two-step carrier-wave stitching method for aspheric and freeform surface measurement with a standard spherical interferometer[J]. Applied Optics, 2018, 57(17): 4743-4750. doi: 10.1364/AO.57.004743
|
[11] |
LIU D, SHI T, ZHANG L, et al. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer[J]. Applied Optics, 2014, 53(24): 5538-5546. doi: 10.1364/AO.53.005538
|
[12] |
TIAN CH, YANG Y Y, ZHUO Y M. Generalized data reduction approach for aspheric testing in a non-null interferometer[J]. Applied Optics, 2012, 51(10): 1598-1604. doi: 10.1364/AO.51.001598
|
[13] |
高松涛, 武东城, 苗二龙. 大偏离度非球面检测畸变校正方法[J]. 中国光学,2017,10(3):383-390. doi: 10.3788/co.20171003.0383
GAO S T, WU D CH, MIAO E L. Distortion correcting method when testing large-departure asphere[J]. Chinese Optics, 2017, 10(3): 383-390. (in Chinese) doi: 10.3788/co.20171003.0383
|
[14] |
何宇航, 李强, 高波, 等. 基于计算全息元件的大口径非球面透镜透射波前检测方法[J]. 激光与光电子学进展,2019,56(2):021202.
HE Y H, LI Q, GAO B, et al. Measurement of the transmission Wavefront of a large-aperture aspheric lens based on computer-generated hologram[J]. Laser &Optoelectronics Progress, 2019, 56(2): 021202. (in Chinese)
|
[15] |
李明, 闫力松, 薛栋林, 等. 计算机再现全息与辅助球面混合补偿检测凸非球面方法研究[J]. 光学学报,2015,35(11):1122001. doi: 10.3788/AOS201535.1122001
LI M, YAN L S, XUE D L, et al. Hybrid compensation testing of convex Asphere with computer generated holograms and fold sphere[J]. Acta Optica Sinica, 2015, 35(11): 1122001. (in Chinese) doi: 10.3788/AOS201535.1122001
|
[16] |
师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学,2014,7(1):26-46.
SHI T, YANG Y Y, ZHANG L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46. (in Chinese)
|
[17] |
王孝坤. 子孔径拼接检测非球面时调整误差的补偿[J]. 中国光学,2013,6(1):88-95.
WANG X K. Compensation of misalignment error on testing aspheric surface by subaperture stitching interferometry[J]. Chinese Optics, 2013, 6(1): 88-95. (in Chinese)
|
[18] |
OFFNER A. A null corrector for Paraboloidal mirrors[J]. Applied Optics, 1963, 2(2): 153-155. doi: 10.1364/AO.2.000153
|
[19] |
NOVAK M, ZHAO C, BURGE J H. Distortion mapping correction in aspheric null testing[J]. Proceeding of SPIE, 2008, 7063: 706313. doi: 10.1117/12.798151
|
[20] |
SULLIVAN J J, GREIVENKAMP J E. Design of partial nulls for testing of fast aspheric surfaces[J]. Proceedings of SPIE, 2007, 6671: 66710W. doi: 10.1117/12.734874
|
[21] |
ZHANG L, LIU D, SHI T, et al. Aspheric subaperture stitching based on system modeling[J]. Optics Express, 2015, 23(15): 19176-19188. doi: 10.1364/OE.23.019176
|
[22] |
MURPHY P, DEVRIES G, FLEIG J, et al. Measurement of high-departure aspheric surfaces using subaperture stitching with variable null optics[J]. Proceeding of SPIE, 2009, 7426: 74260P. doi: 10.1117/12.826544
|
[23] |
CHEN SH Y, LI SH Y, DAI Y F, et al. Lattice design for subaperture stitching test of a concave paraboloid surface[J]. Applied Optics, 2006, 45(10): 1112007.
|
[24] |
黄亚, 马骏, 朱日宏, 等. 基于计算全息的光学自由曲面测量不确定度分析[J]. 光学学报,2015,35(11):1112007-172. doi: 10.3788/AOS201535.1112007
HUANG Y, MA J, ZHU R H, et al. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram[J]. Acta Optica Sinica, 2015, 35(11): 1112007-172. (in Chinese) doi: 10.3788/AOS201535.1112007
|
[25] |
苏萍, 谭峭峰, 康果果, 等. 自由曲面零补偿计算全息图离散相位的B样条拟合[J]. 光学学报,2010,30(6):1767-1771. doi: 10.3788/AOS20103006.1767
SU P, TAN Q F, KANG G G, et al. B-spline interpolation of scattered phase data of computer generated hologram for null test of freeform surface[J]. Acta Optica Sinica, 2010, 30(6): 1767-1771. (in Chinese) doi: 10.3788/AOS20103006.1767
|
[26] |
FORTMEIER I, STAVRIDIS M, WIEGMANN A, et al. Evaluation of absolute form measurements using a tilted-wave interferometer[J]. Optics Express, 2016, 24(4): 3393-3404. doi: 10.1364/OE.24.003393
|
[27] |
XUE SH, CHEN SH Y, TIE G P. Near-null interferometry using an aspheric null lens generating a broad range of variable spherical aberration for flexible test of aspheres[J]. Optics Express, 2018, 26(24): 31172-31189. doi: 10.1364/OE.26.031172
|
[28] |
CHEN SH Y, ZHAO CH Y, DAI Y F, et al. Reconfigurable optical null based on counter-rotating Zernike plates for test of aspheres[J]. Optics Express, 2014, 22(2): 1381-1386. doi: 10.1364/OE.22.001381
|
[29] |
TANONE A, ZHANG ZH, UANG C M, et al. Phase modulation depth for a real-time kinoform using a liquid crystal television[J]. Optical Engineering, 1993, 32(3): 517-521. doi: 10.1117/12.61038
|
[30] |
AMAKO J, SONEHARA T. Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator[J]. Applied Optics, 1991, 30(32): 4622-4628. doi: 10.1364/AO.30.004622
|
[31] |
DAVIS J A, VALADÉZ K O, COTTRELL D M. Encoding amplitude and phase information onto a binary phase-only spatial light modulator[J]. Applied Optics, 2003, 42(11): 2003-2008. doi: 10.1364/AO.42.002003
|
[32] |
CAO ZH L, XUAN L, HU L F, et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Optics Express, 2005, 13(4): 1059-1065. doi: 10.1364/OPEX.13.001059
|
[33] |
KACPERSKI J, KUJAWINSKA M. Active, LCoS based laser interferometer for microelements studies[J]. Optics Express, 2006, 14(21): 9664-9678. doi: 10.1364/OE.14.009664
|
[34] |
ARES M, ROYO S, SERGIEVSKAYA I, et al. Active optics null test system based on a liquid crystal programmable spatial light modulator[J]. Applied Optics, 2010, 49(32): 6201-6206. doi: 10.1364/AO.49.006201
|
[35] |
NEIL M A A, BOOTH M J, WILSON T. Dynamic wave-front generation for the characterization and testing of optical systems[J]. Optics Letters, 1998, 23(23): 1849-1851. doi: 10.1364/OL.23.001849
|
[36] |
BORUAH B R, LOVE G D, NEIL M A A. Interferometry using binary holograms without high order diffraction effects[J]. Optics Letters, 2011, 36(12): 2357-2359. doi: 10.1364/OL.36.002357
|
[37] |
CASHMORE M T, HALL S R G, LOVE G D. Traceable interferometry using binary reconfigurable holograms[J]. Applied Optics, 2014, 53(24): 5353-5358. doi: 10.1364/AO.53.005353
|
[38] |
XUE SH, CHEN SH Y, FAN ZH B, et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 2018, 26(17): 21910-21928. doi: 10.1364/OE.26.021910
|
[39] |
XUE SH, CHEN SH Y, TIE G P, et al. Adaptive null interferometric test using spatial light modulator for free-form surfaces[J]. Optics Express, 2019, 27(6): 8414-8428. doi: 10.1364/OE.27.008414
|
[40] |
XUE SH, CHEN SH Y, TIE G P, et al. Flexible interferometric null testing for concave free-form surfaces using a hybrid refractive and diffractive variable null[J]. Optics Letters, 2019, 44(9): 2294-2297. doi: 10.1364/OL.44.002294
|
[41] |
CHAUDHURI R, PAPA J, ROLLAND J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 2019, 44(8): 2000-2003. doi: 10.1364/OL.44.002000
|
[42] |
HOLOEYE[EB/OL]. GAEA-210 Mega pixel phase only LCOS-SLM (reflective). https://holoeye.com/gaea-4k-phase-only-spatiallight-modulator/.
|
[43] |
杨慧珍, 李新阳, 姜文汉. 自适应光学技术在大气光通信系统中的应用进展[J]. 激光与光电子学进展,2007,44(10):61-68.
YANG H ZH, LI X Y, JIANG W H. Applications of adaptive optics technology in atmospheric laser communications system[J]. Laser &Optoelectronics Progress, 2007, 44(10): 61-68. (in Chinese)
|
[44] |
饶长辉, 姜文汉, 凌宁, 等. 自适应光学系统对实际大气湍流波前的时域校正效果[J]. 光学学报,2001,21(8):933-938. doi: 10.3321/j.issn:0253-2239.2001.08.009
RAO CH H, JIANG W H, LING N, et al. Temporal correction effectiveness of adaptive optical system for light wave atmospheric propagation[J]. Acta Optica Sinica, 2001, 21(8): 933-938. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.08.009
|
[45] |
FERNÁNDEZ E J, VABRE L, HERMANN B, et al. Adaptive optics with a magnetic deformable mirror: applications in the human eye[J]. Optics Express, 2006, 14(20): 8900-8917. doi: 10.1364/OE.14.008900
|
[46] |
张雨东, 姜文汉, 史国华, 等. 自适应光学的眼科学应用[J]. 中国科学 G辑: 物理学 力学 天文学,2007,37(S1):68-74.
ZHANG Y D, JIANG W H, SHI G H, et al. Ophthalmology applications of adaptive optics[J]. Science in China Series G:Physics,Mechanics &Astronomy, 2007, 37(S1): 68-74. (in Chinese)
|
[47] |
PRUSS C, TIZIANI H J. Dynamic null lens for aspheric testing using a membrane mirror[J]. Optics Communications, 2004, 233(1-3): 15-19. doi: 10.1016/j.optcom.2004.01.030
|
[48] |
BOOTH M, WILSON T, SUN H B, et al. Methods for the characterization of deformable membrane mirrors[J]. Applied Optics, 2005, 44(24): 5131-5139. doi: 10.1364/AO.44.005131
|
[49] |
FUERSCHBACH K, THOMPSON K P, ROLLAND J P. Interferometric measurement of a concave, φ-polynomial, Zernike mirror[J]. Optics Letters, 2014, 39(1): 18-21. doi: 10.1364/OL.39.000018
|
[50] |
HUANG L, CHOI H, ZHAO W CH, et al. Adaptive interferometric null testing for unknown freeform optics metrology[J]. Optics Letters, 2016, 41(23): 5539-5542. doi: 10.1364/OL.41.005539
|
[51] |
WANG D D, ZHANG S, WU R M, et al. Computer-aided high-accuracy testing of reflective surface with reverse Hartmann test[J]. Optics Express, 2016, 24(17): 19671-19681. doi: 10.1364/OE.24.019671
|
[52] |
HUANG L, XUE J P, GAO B, et al. Modal phase measuring deflectometry[J]. Optics Express, 2016, 24(21): 24649-24664. doi: 10.1364/OE.24.024649
|
[53] |
陈惠颖, 王卫兵, 王挺峰, 等. 随机并行梯度下降算法性能与变形镜排布规律的关系研究[J]. 中国光学,2016,9(4):432-438. doi: 10.3788/co.20160904.0432
CHEN H Y, WANG W B, WANG T F, et al. Relationship between performance of stochastic parallel gradient descent algorithm and distribution rule of deformable mirror[J]. Chinese Optics, 2016, 9(4): 432-438. (in Chinese) doi: 10.3788/co.20160904.0432
|
[54] |
WANG W B, WANG T F, GUO J. Simulation on the law of wave-front shaping with stochastic parallel gradient descent algorithm for adaptive optics[J]. Chinese Optics, 2014, 7(3): 411-420.
|
[55] |
ZHANG L, ZHOU SH, LI D, et al. Pure adaptive interferometer for free form surfaces metrology[J]. Optics Express, 2018, 26(7): 7888-7898. doi: 10.1364/OE.26.007888
|
[56] |
ZHANG L, ZHOU S, LI D, et al. Model-based adaptive non-null interferometry for freeform surface metrology[J]. Chinese Optics Letters, 2018, 16(8): 081203. doi: 10.3788/COL201816.081203
|
[57] |
CHENG T, LIU W J, PANG B Q, et al. A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system[J]. Chinese Physics B, 2018, 27(7): 070704. doi: 10.1088/1674-1056/27/7/070704
|
[58] |
LIU W J, DONG L ZH, YANG P, et al. A Zernike mode decomposition decoupling control algorithm for dual deformable mirrors adaptive optics system[J]. Optics Express, 2013, 21(20): 23885-23895. doi: 10.1364/OE.21.023885
|
[59] |
LIU W J, DONG L ZH, YANG P, et al. Zonal decoupling algorithm for dual deformable mirror adaptive optics system[J]. Chinese Optics Letters, 2016, 14(2): 020101. doi: 10.3788/COL201614.020101
|
[60] |
ZOU W Y, QI X F, BURNS S A. Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system[J]. Optics Letters, 2008, 33(22): 2602-2604. doi: 10.1364/OL.33.002602
|
[61] |
ZHANG L, LI CH, HUANG X L, et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 2020, 28(2): 1897-1913. doi: 10.1364/OE.380889
|
[62] |
ALPAO. Deformable mirrors[EB/OL]. (2019). https://www.alpao.com/adaptive-optics/deformable-mirrors.html.
|
[63] |
BITENC U. Software compensation method for achieving high stability of Alpao deformable mirrors[J]. Optics Express, 2017, 25(4): 4368-4381. doi: 10.1364/OE.25.004368
|
[64] |
ZHANG L, ZHANG Y K. Freeform surface interferometry with an adaptive ring-cavity compensator[J]. Surface Topography:Metrology and Properties, 2020, 8(2): 025036. doi: 10.1088/2051-672X/ab9e43
|
[65] |
杨华峰, 饶长辉, 张雨东, 等. 自适应光学系统中变形镜和波前传感器共轭位置要求的分析[J]. 光电工程,2009,36(4):27-34. doi: 10.3969/j.issn.1003-501X.2009.04.006
YANG H F, RAO CH H, ZHANG Y D, et al. Analysis of the conjugation request between the wavefront sensors and the deformable mirrors in adaptive optics system[J]. Opto-Electronic Engineering, 2009, 36(4): 27-34. (in Chinese) doi: 10.3969/j.issn.1003-501X.2009.04.006
|
[66] |
LEI X, WANG SH, YAN H, et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization[J]. Optics Express, 2012, 20(20): 22143-22157. doi: 10.1364/OE.20.022143
|
[67] |
DOU R SH, VORONTSOV M A, SIVOKON V P, et al. Iterative technique for high-resolution phase distortion compensation in adaptive interferometers[J]. Optical Engineering, 1997, 36(12): 3327-3335. doi: 10.1117/1.601591
|
[68] |
HU Q T, ZHEN L L, MAO Y, et al. Adaptive stochastic parallel gradient descent approach for efficient fiber coupling[J]. Optics Express, 2020, 28(9): 13141-13154. doi: 10.1364/OE.390762
|
[69] |
VORONTSOV M A, CARHART G W. Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters[J]. Journal of Optics Society of America A, 2006, 23(10): 2613-2622. doi: 10.1364/JOSAA.23.002613
|
[70] |
WU K N, SUN Y, HUAI Y, et al. Multi-perturbation stochastic parallel gradient descent method for wavefront correction[J]. Optics Express, 2015, 23(3): 2933-2944. doi: 10.1364/OE.23.002933
|
[71] |
XUE SH, DENG W X, CHEN SH Y. Intelligence enhancement of the adaptive wavefront interferometer[J]. Optics Express, 2019, 27(8): 11084-11102. doi: 10.1364/OE.27.011084
|
[72] |
ZHANG Y, TIAN X B, LIANG R G. SPGD and Newton iteration mixed algorithm used in freeform surface metrology[J]. Optics and Lasers in Engineering, 2020, 129: 106050. doi: 10.1016/j.optlaseng.2020.106050
|
[73] |
LIMA N C, MISHRA K, MUGELE F. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses[J]. Optics Express, 2017, 25(6): 6700-6711. doi: 10.1364/OE.25.006700
|
[74] |
OLIKER V, DOSKOLOVICH L L, BYKOV D A. Beam shaping with a plano-freeform lens pair[J]. Optics Express, 2018, 26(15): 19406-19419. doi: 10.1364/OE.26.019406
|
[75] |
DING Z Q, WANG CH H, HU ZH X, et al. Surface profiling of an aspherical liquid lens with a varied thickness membrane[J]. Optics Express, 2017, 25(4): 3122-3132. doi: 10.1364/OE.25.003122
|
[76] |
ZHOU H, ZHANG X F, XU Z J, et al. Universal membrane-based tunable liquid lens design for dynamically correcting spherical aberration over user-defined focal length range[J]. Optics Express, 2019, 27(26): 37667-37679. doi: 10.1364/OE.27.037667
|
[77] |
XU ZH X, YANG P, HU K, et al. Deep learning control model for adaptive optics systems[J]. Applied Optics, 2019, 58(8): 1998-2009. doi: 10.1364/AO.58.001998
|
[78] |
GUZMÁN D, DE COS JUEZ F J, MYERS R, et al. Modeling a MEMS deformable mirror using non-parametric estimation techniques[J]. Optics Express, 2010, 18(20): 21356-21369. doi: 10.1364/OE.18.021356
|
[79] |
BLAIN C, GUYON O, BRADLEY C, et al. Fast Iterative Algorithm (FIA) for controlling MEMS deformable mirrors: principle and laboratory demonstration[J]. Optics Express, 2011, 19(22): 21271-21294. doi: 10.1364/OE.19.021271
|
[80] |
BLAIN C, CONAN R, BRADLEY C, et al. Open-loop control demonstration of micro-electro-mechanical-system MEMS deformable mirror[J]. Optics Express, 2010, 18(6): 5433-5448. doi: 10.1364/OE.18.005433
|
[81] |
STEWART J B, DIOUF A, ZHOU Y P, et al. Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control[J]. Journal of the Optical Society of America A, 2007, 24(12): 3827-3833. doi: 10.1364/JOSAA.24.003827
|
[82] |
DIOUF A, LEGENDRE A P, STEWART J B, et al. Open-loop shape control for continuous microelectromechanical system deformable mirror[J]. Applied Optics, 2010, 49(31): G148-G154. doi: 10.1364/AO.49.00G148
|