Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
ZHANG Lei, WU Jin-ling, LIU Ren-hu, YU Ben-li. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. doi: 10.37188/CO.2020-0126
Citation: ZHANG Lei, WU Jin-ling, LIU Ren-hu, YU Ben-li. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. doi: 10.37188/CO.2020-0126

Research advances in adaptive interferometry for optical freeform surfaces

Funds:  Supported by National Natural Science Foundation of China (No. 61705002, No. 61675005, No. 61905001, No. 41875158); Anhui Natural Science Foundation (No. 1808085QF198, No. 1908085QF276); Research project of Anhui University (No. J01003208); National key Research and Development Program (No. 2016YFC0301900, No. 2016YFC0302202)
More Information
  • Corresponding author: optzl@ahu.edu.cn
  • Received Date: 17 Jul 2020
  • Rev Recd Date: 17 Aug 2020
  • Available Online: 14 Oct 2020
  • Publish Date: 23 Mar 2021
  • Optical free-form surfaces are difficult to detect due to their rich degrees of freedom. Interference detection methods are both highly precise and non-contact. However, the static compensator in a traditional interferometer faces difficulty in achieving in-situ tests of unknown surface shapes or those changing during fabrication. Therefore, programmable adaptive compensators for large dynamic ranges have become a well-researched topic in recent years. Combined with the research work in the field of freeform surface metrology, we introduce the latest research progress in adaptive interferometry for optical freeform surfaces. Adaptive interferometers based on a Deformable Mirror (DM) or Liquid Crystal Spatial Light Modulator (LC-SLM) are analyzed in detail. An adaptive controlling algorithm in the adaptive interferometer is introduced as well. Finally, the advantages and development bottleneck of the above two kinds of adaptive interferometry are summarized and the prospects for the future development of freeform surface adaptive interferometers are proposed.

     

  • loading
  • [1]
    REIMERS J, BAUER A, THOMPSON K P, et al. Freeform spectrometer enabling increased compactness[J]. Light:Science &Applications, 2017, 6(7): e17026.
    [2]
    王欣, 刘强, 舒嵘. 大视场快焦比施密特系统在星载光谱仪中的应用[J]. 光学 精密工程,2019,27(3):533-541. doi: 10.3788/OPE.20192703.0533

    WANG X, LIU Q, SHU R. Application of Schmidt optical system with wide-field of view and fast focal ratio to aerospace imaging spectrometer[J]. Optics and Precision Engineering, 2019, 27(3): 533-541. (in Chinese) doi: 10.3788/OPE.20192703.0533
    [3]
    BAUER A, SCHIESSER E M, ROLLAND J P. Starting geometry creation and design method for freeform optics[J]. Nature Communications, 2018, 9(1): 1756. doi: 10.1038/s41467-018-04186-9
    [4]
    YANG T, JIN G F, ZHU J. Automated design of freeform imaging systems[J]. Light:Science &Applications, 2017, 6(10): e17081.
    [5]
    赵星, 肖流长, 张赞, 等. 基于面形斜率的高斯径向基自由曲面优化设计及公差分析[J]. 光学 精密工程,2019,27(12):2499-2508. doi: 10.3788/OPE.20192712.2499

    ZHAO X, XIAO L CH, ZHANG Z, et al. Optimization and tolerance analysis of freeform surface using Gaussian RBF-Slope model[J]. Optics and Precision Engineering, 2019, 27(12): 2499-2508. (in Chinese) doi: 10.3788/OPE.20192712.2499
    [6]
    GISSIBL T, THIELE S, HERKOMMER A, et al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres[J]. Nature Communications, 2016, 7(1): 11763. doi: 10.1038/ncomms11763
    [7]
    HONG ZH H, LIANG R G. IR-laser assisted additive freeform optics manufacturing[J]. Scientific Reports, 2017, 7(1): 7145. doi: 10.1038/s41598-017-07446-8
    [8]
    徐领娣, 房安利, 于建海, 等. 微晶材质自由曲面反射镜精密超声铣磨加工技术[J]. 光学 精密工程,2019,27(12):2564-2570. doi: 10.3788/OPE.20192712.2564

    XU L D, FANG A L, YU J H, et al. Ultrasonic-vibration assisted grinding of a zerodour freeform optical mirror[J]. Optics and Precision Engineering, 2019, 27(12): 2564-2570. (in Chinese) doi: 10.3788/OPE.20192712.2564
    [9]
    GREIVENKAMP J E, GAPPINGER R O. Design of a nonnull interferometer for aspheric wave fronts[J]. Applied Optics, 2004, 43(27): 5143-5151. doi: 10.1364/AO.43.005143
    [10]
    HAO Q, WANG SH P, HU Y, et al. Two-step carrier-wave stitching method for aspheric and freeform surface measurement with a standard spherical interferometer[J]. Applied Optics, 2018, 57(17): 4743-4750. doi: 10.1364/AO.57.004743
    [11]
    LIU D, SHI T, ZHANG L, et al. Reverse optimization reconstruction of aspheric figure error in a non-null interferometer[J]. Applied Optics, 2014, 53(24): 5538-5546. doi: 10.1364/AO.53.005538
    [12]
    TIAN CH, YANG Y Y, ZHUO Y M. Generalized data reduction approach for aspheric testing in a non-null interferometer[J]. Applied Optics, 2012, 51(10): 1598-1604. doi: 10.1364/AO.51.001598
    [13]
    高松涛, 武东城, 苗二龙. 大偏离度非球面检测畸变校正方法[J]. 中国光学,2017,10(3):383-390. doi: 10.3788/co.20171003.0383

    GAO S T, WU D CH, MIAO E L. Distortion correcting method when testing large-departure asphere[J]. Chinese Optics, 2017, 10(3): 383-390. (in Chinese) doi: 10.3788/co.20171003.0383
    [14]
    何宇航, 李强, 高波, 等. 基于计算全息元件的大口径非球面透镜透射波前检测方法[J]. 激光与光电子学进展,2019,56(2):021202.

    HE Y H, LI Q, GAO B, et al. Measurement of the transmission Wavefront of a large-aperture aspheric lens based on computer-generated hologram[J]. Laser &Optoelectronics Progress, 2019, 56(2): 021202. (in Chinese)
    [15]
    李明, 闫力松, 薛栋林, 等. 计算机再现全息与辅助球面混合补偿检测凸非球面方法研究[J]. 光学学报,2015,35(11):1122001. doi: 10.3788/AOS201535.1122001

    LI M, YAN L S, XUE D L, et al. Hybrid compensation testing of convex Asphere with computer generated holograms and fold sphere[J]. Acta Optica Sinica, 2015, 35(11): 1122001. (in Chinese) doi: 10.3788/AOS201535.1122001
    [16]
    师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学,2014,7(1):26-46.

    SHI T, YANG Y Y, ZHANG L, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46. (in Chinese)
    [17]
    王孝坤. 子孔径拼接检测非球面时调整误差的补偿[J]. 中国光学,2013,6(1):88-95.

    WANG X K. Compensation of misalignment error on testing aspheric surface by subaperture stitching interferometry[J]. Chinese Optics, 2013, 6(1): 88-95. (in Chinese)
    [18]
    OFFNER A. A null corrector for Paraboloidal mirrors[J]. Applied Optics, 1963, 2(2): 153-155. doi: 10.1364/AO.2.000153
    [19]
    NOVAK M, ZHAO C, BURGE J H. Distortion mapping correction in aspheric null testing[J]. Proceeding of SPIE, 2008, 7063: 706313. doi: 10.1117/12.798151
    [20]
    SULLIVAN J J, GREIVENKAMP J E. Design of partial nulls for testing of fast aspheric surfaces[J]. Proceedings of SPIE, 2007, 6671: 66710W. doi: 10.1117/12.734874
    [21]
    ZHANG L, LIU D, SHI T, et al. Aspheric subaperture stitching based on system modeling[J]. Optics Express, 2015, 23(15): 19176-19188. doi: 10.1364/OE.23.019176
    [22]
    MURPHY P, DEVRIES G, FLEIG J, et al. Measurement of high-departure aspheric surfaces using subaperture stitching with variable null optics[J]. Proceeding of SPIE, 2009, 7426: 74260P. doi: 10.1117/12.826544
    [23]
    CHEN SH Y, LI SH Y, DAI Y F, et al. Lattice design for subaperture stitching test of a concave paraboloid surface[J]. Applied Optics, 2006, 45(10): 1112007.
    [24]
    黄亚, 马骏, 朱日宏, 等. 基于计算全息的光学自由曲面测量不确定度分析[J]. 光学学报,2015,35(11):1112007-172. doi: 10.3788/AOS201535.1112007

    HUANG Y, MA J, ZHU R H, et al. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram[J]. Acta Optica Sinica, 2015, 35(11): 1112007-172. (in Chinese) doi: 10.3788/AOS201535.1112007
    [25]
    苏萍, 谭峭峰, 康果果, 等. 自由曲面零补偿计算全息图离散相位的B样条拟合[J]. 光学学报,2010,30(6):1767-1771. doi: 10.3788/AOS20103006.1767

    SU P, TAN Q F, KANG G G, et al. B-spline interpolation of scattered phase data of computer generated hologram for null test of freeform surface[J]. Acta Optica Sinica, 2010, 30(6): 1767-1771. (in Chinese) doi: 10.3788/AOS20103006.1767
    [26]
    FORTMEIER I, STAVRIDIS M, WIEGMANN A, et al. Evaluation of absolute form measurements using a tilted-wave interferometer[J]. Optics Express, 2016, 24(4): 3393-3404. doi: 10.1364/OE.24.003393
    [27]
    XUE SH, CHEN SH Y, TIE G P. Near-null interferometry using an aspheric null lens generating a broad range of variable spherical aberration for flexible test of aspheres[J]. Optics Express, 2018, 26(24): 31172-31189. doi: 10.1364/OE.26.031172
    [28]
    CHEN SH Y, ZHAO CH Y, DAI Y F, et al. Reconfigurable optical null based on counter-rotating Zernike plates for test of aspheres[J]. Optics Express, 2014, 22(2): 1381-1386. doi: 10.1364/OE.22.001381
    [29]
    TANONE A, ZHANG ZH, UANG C M, et al. Phase modulation depth for a real-time kinoform using a liquid crystal television[J]. Optical Engineering, 1993, 32(3): 517-521. doi: 10.1117/12.61038
    [30]
    AMAKO J, SONEHARA T. Kinoform using an electrically controlled birefringent liquid-crystal spatial light modulator[J]. Applied Optics, 1991, 30(32): 4622-4628. doi: 10.1364/AO.30.004622
    [31]
    DAVIS J A, VALADÉZ K O, COTTRELL D M. Encoding amplitude and phase information onto a binary phase-only spatial light modulator[J]. Applied Optics, 2003, 42(11): 2003-2008. doi: 10.1364/AO.42.002003
    [32]
    CAO ZH L, XUAN L, HU L F, et al. Investigation of optical testing with a phase-only liquid crystal spatial light modulator[J]. Optics Express, 2005, 13(4): 1059-1065. doi: 10.1364/OPEX.13.001059
    [33]
    KACPERSKI J, KUJAWINSKA M. Active, LCoS based laser interferometer for microelements studies[J]. Optics Express, 2006, 14(21): 9664-9678. doi: 10.1364/OE.14.009664
    [34]
    ARES M, ROYO S, SERGIEVSKAYA I, et al. Active optics null test system based on a liquid crystal programmable spatial light modulator[J]. Applied Optics, 2010, 49(32): 6201-6206. doi: 10.1364/AO.49.006201
    [35]
    NEIL M A A, BOOTH M J, WILSON T. Dynamic wave-front generation for the characterization and testing of optical systems[J]. Optics Letters, 1998, 23(23): 1849-1851. doi: 10.1364/OL.23.001849
    [36]
    BORUAH B R, LOVE G D, NEIL M A A. Interferometry using binary holograms without high order diffraction effects[J]. Optics Letters, 2011, 36(12): 2357-2359. doi: 10.1364/OL.36.002357
    [37]
    CASHMORE M T, HALL S R G, LOVE G D. Traceable interferometry using binary reconfigurable holograms[J]. Applied Optics, 2014, 53(24): 5353-5358. doi: 10.1364/AO.53.005353
    [38]
    XUE SH, CHEN SH Y, FAN ZH B, et al. Adaptive wavefront interferometry for unknown free-form surfaces[J]. Optics Express, 2018, 26(17): 21910-21928. doi: 10.1364/OE.26.021910
    [39]
    XUE SH, CHEN SH Y, TIE G P, et al. Adaptive null interferometric test using spatial light modulator for free-form surfaces[J]. Optics Express, 2019, 27(6): 8414-8428. doi: 10.1364/OE.27.008414
    [40]
    XUE SH, CHEN SH Y, TIE G P, et al. Flexible interferometric null testing for concave free-form surfaces using a hybrid refractive and diffractive variable null[J]. Optics Letters, 2019, 44(9): 2294-2297. doi: 10.1364/OL.44.002294
    [41]
    CHAUDHURI R, PAPA J, ROLLAND J P. System design of a single-shot reconfigurable null test using a spatial light modulator for freeform metrology[J]. Optics Letters, 2019, 44(8): 2000-2003. doi: 10.1364/OL.44.002000
    [42]
    HOLOEYE[EB/OL]. GAEA-210 Mega pixel phase only LCOS-SLM (reflective). https://holoeye.com/gaea-4k-phase-only-spatiallight-modulator/.
    [43]
    杨慧珍, 李新阳, 姜文汉. 自适应光学技术在大气光通信系统中的应用进展[J]. 激光与光电子学进展,2007,44(10):61-68.

    YANG H ZH, LI X Y, JIANG W H. Applications of adaptive optics technology in atmospheric laser communications system[J]. Laser &Optoelectronics Progress, 2007, 44(10): 61-68. (in Chinese)
    [44]
    饶长辉, 姜文汉, 凌宁, 等. 自适应光学系统对实际大气湍流波前的时域校正效果[J]. 光学学报,2001,21(8):933-938. doi: 10.3321/j.issn:0253-2239.2001.08.009

    RAO CH H, JIANG W H, LING N, et al. Temporal correction effectiveness of adaptive optical system for light wave atmospheric propagation[J]. Acta Optica Sinica, 2001, 21(8): 933-938. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.08.009
    [45]
    FERNÁNDEZ E J, VABRE L, HERMANN B, et al. Adaptive optics with a magnetic deformable mirror: applications in the human eye[J]. Optics Express, 2006, 14(20): 8900-8917. doi: 10.1364/OE.14.008900
    [46]
    张雨东, 姜文汉, 史国华, 等. 自适应光学的眼科学应用[J]. 中国科学 G辑: 物理学 力学 天文学,2007,37(S1):68-74.

    ZHANG Y D, JIANG W H, SHI G H, et al. Ophthalmology applications of adaptive optics[J]. Science in China Series G:Physics,Mechanics &Astronomy, 2007, 37(S1): 68-74. (in Chinese)
    [47]
    PRUSS C, TIZIANI H J. Dynamic null lens for aspheric testing using a membrane mirror[J]. Optics Communications, 2004, 233(1-3): 15-19. doi: 10.1016/j.optcom.2004.01.030
    [48]
    BOOTH M, WILSON T, SUN H B, et al. Methods for the characterization of deformable membrane mirrors[J]. Applied Optics, 2005, 44(24): 5131-5139. doi: 10.1364/AO.44.005131
    [49]
    FUERSCHBACH K, THOMPSON K P, ROLLAND J P. Interferometric measurement of a concave, φ-polynomial, Zernike mirror[J]. Optics Letters, 2014, 39(1): 18-21. doi: 10.1364/OL.39.000018
    [50]
    HUANG L, CHOI H, ZHAO W CH, et al. Adaptive interferometric null testing for unknown freeform optics metrology[J]. Optics Letters, 2016, 41(23): 5539-5542. doi: 10.1364/OL.41.005539
    [51]
    WANG D D, ZHANG S, WU R M, et al. Computer-aided high-accuracy testing of reflective surface with reverse Hartmann test[J]. Optics Express, 2016, 24(17): 19671-19681. doi: 10.1364/OE.24.019671
    [52]
    HUANG L, XUE J P, GAO B, et al. Modal phase measuring deflectometry[J]. Optics Express, 2016, 24(21): 24649-24664. doi: 10.1364/OE.24.024649
    [53]
    陈惠颖, 王卫兵, 王挺峰, 等. 随机并行梯度下降算法性能与变形镜排布规律的关系研究[J]. 中国光学,2016,9(4):432-438. doi: 10.3788/co.20160904.0432

    CHEN H Y, WANG W B, WANG T F, et al. Relationship between performance of stochastic parallel gradient descent algorithm and distribution rule of deformable mirror[J]. Chinese Optics, 2016, 9(4): 432-438. (in Chinese) doi: 10.3788/co.20160904.0432
    [54]
    WANG W B, WANG T F, GUO J. Simulation on the law of wave-front shaping with stochastic parallel gradient descent algorithm for adaptive optics[J]. Chinese Optics, 2014, 7(3): 411-420.
    [55]
    ZHANG L, ZHOU SH, LI D, et al. Pure adaptive interferometer for free form surfaces metrology[J]. Optics Express, 2018, 26(7): 7888-7898. doi: 10.1364/OE.26.007888
    [56]
    ZHANG L, ZHOU S, LI D, et al. Model-based adaptive non-null interferometry for freeform surface metrology[J]. Chinese Optics Letters, 2018, 16(8): 081203. doi: 10.3788/COL201816.081203
    [57]
    CHENG T, LIU W J, PANG B Q, et al. A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system[J]. Chinese Physics B, 2018, 27(7): 070704. doi: 10.1088/1674-1056/27/7/070704
    [58]
    LIU W J, DONG L ZH, YANG P, et al. A Zernike mode decomposition decoupling control algorithm for dual deformable mirrors adaptive optics system[J]. Optics Express, 2013, 21(20): 23885-23895. doi: 10.1364/OE.21.023885
    [59]
    LIU W J, DONG L ZH, YANG P, et al. Zonal decoupling algorithm for dual deformable mirror adaptive optics system[J]. Chinese Optics Letters, 2016, 14(2): 020101. doi: 10.3788/COL201614.020101
    [60]
    ZOU W Y, QI X F, BURNS S A. Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system[J]. Optics Letters, 2008, 33(22): 2602-2604. doi: 10.1364/OL.33.002602
    [61]
    ZHANG L, LI CH, HUANG X L, et al. Compact adaptive interferometer for unknown freeform surfaces with large departure[J]. Optics Express, 2020, 28(2): 1897-1913. doi: 10.1364/OE.380889
    [62]
    ALPAO. Deformable mirrors[EB/OL]. (2019). https://www.alpao.com/adaptive-optics/deformable-mirrors.html.
    [63]
    BITENC U. Software compensation method for achieving high stability of Alpao deformable mirrors[J]. Optics Express, 2017, 25(4): 4368-4381. doi: 10.1364/OE.25.004368
    [64]
    ZHANG L, ZHANG Y K. Freeform surface interferometry with an adaptive ring-cavity compensator[J]. Surface Topography:Metrology and Properties, 2020, 8(2): 025036. doi: 10.1088/2051-672X/ab9e43
    [65]
    杨华峰, 饶长辉, 张雨东, 等. 自适应光学系统中变形镜和波前传感器共轭位置要求的分析[J]. 光电工程,2009,36(4):27-34. doi: 10.3969/j.issn.1003-501X.2009.04.006

    YANG H F, RAO CH H, ZHANG Y D, et al. Analysis of the conjugation request between the wavefront sensors and the deformable mirrors in adaptive optics system[J]. Opto-Electronic Engineering, 2009, 36(4): 27-34. (in Chinese) doi: 10.3969/j.issn.1003-501X.2009.04.006
    [66]
    LEI X, WANG SH, YAN H, et al. Double-deformable-mirror adaptive optics system for laser beam cleanup using blind optimization[J]. Optics Express, 2012, 20(20): 22143-22157. doi: 10.1364/OE.20.022143
    [67]
    DOU R SH, VORONTSOV M A, SIVOKON V P, et al. Iterative technique for high-resolution phase distortion compensation in adaptive interferometers[J]. Optical Engineering, 1997, 36(12): 3327-3335. doi: 10.1117/1.601591
    [68]
    HU Q T, ZHEN L L, MAO Y, et al. Adaptive stochastic parallel gradient descent approach for efficient fiber coupling[J]. Optics Express, 2020, 28(9): 13141-13154. doi: 10.1364/OE.390762
    [69]
    VORONTSOV M A, CARHART G W. Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters[J]. Journal of Optics Society of America A, 2006, 23(10): 2613-2622. doi: 10.1364/JOSAA.23.002613
    [70]
    WU K N, SUN Y, HUAI Y, et al. Multi-perturbation stochastic parallel gradient descent method for wavefront correction[J]. Optics Express, 2015, 23(3): 2933-2944. doi: 10.1364/OE.23.002933
    [71]
    XUE SH, DENG W X, CHEN SH Y. Intelligence enhancement of the adaptive wavefront interferometer[J]. Optics Express, 2019, 27(8): 11084-11102. doi: 10.1364/OE.27.011084
    [72]
    ZHANG Y, TIAN X B, LIANG R G. SPGD and Newton iteration mixed algorithm used in freeform surface metrology[J]. Optics and Lasers in Engineering, 2020, 129: 106050. doi: 10.1016/j.optlaseng.2020.106050
    [73]
    LIMA N C, MISHRA K, MUGELE F. Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses[J]. Optics Express, 2017, 25(6): 6700-6711. doi: 10.1364/OE.25.006700
    [74]
    OLIKER V, DOSKOLOVICH L L, BYKOV D A. Beam shaping with a plano-freeform lens pair[J]. Optics Express, 2018, 26(15): 19406-19419. doi: 10.1364/OE.26.019406
    [75]
    DING Z Q, WANG CH H, HU ZH X, et al. Surface profiling of an aspherical liquid lens with a varied thickness membrane[J]. Optics Express, 2017, 25(4): 3122-3132. doi: 10.1364/OE.25.003122
    [76]
    ZHOU H, ZHANG X F, XU Z J, et al. Universal membrane-based tunable liquid lens design for dynamically correcting spherical aberration over user-defined focal length range[J]. Optics Express, 2019, 27(26): 37667-37679. doi: 10.1364/OE.27.037667
    [77]
    XU ZH X, YANG P, HU K, et al. Deep learning control model for adaptive optics systems[J]. Applied Optics, 2019, 58(8): 1998-2009. doi: 10.1364/AO.58.001998
    [78]
    GUZMÁN D, DE COS JUEZ F J, MYERS R, et al. Modeling a MEMS deformable mirror using non-parametric estimation techniques[J]. Optics Express, 2010, 18(20): 21356-21369. doi: 10.1364/OE.18.021356
    [79]
    BLAIN C, GUYON O, BRADLEY C, et al. Fast Iterative Algorithm (FIA) for controlling MEMS deformable mirrors: principle and laboratory demonstration[J]. Optics Express, 2011, 19(22): 21271-21294. doi: 10.1364/OE.19.021271
    [80]
    BLAIN C, CONAN R, BRADLEY C, et al. Open-loop control demonstration of micro-electro-mechanical-system MEMS deformable mirror[J]. Optics Express, 2010, 18(6): 5433-5448. doi: 10.1364/OE.18.005433
    [81]
    STEWART J B, DIOUF A, ZHOU Y P, et al. Open-loop control of a MEMS deformable mirror for large-amplitude wavefront control[J]. Journal of the Optical Society of America A, 2007, 24(12): 3827-3833. doi: 10.1364/JOSAA.24.003827
    [82]
    DIOUF A, LEGENDRE A P, STEWART J B, et al. Open-loop shape control for continuous microelectromechanical system deformable mirror[J]. Applied Optics, 2010, 49(31): G148-G154. doi: 10.1364/AO.49.00G148
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article views(3992) PDF downloads(512) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return