Volume 14 Issue 3
May  2021
Turn off MathJax
Article Contents
TONG Yi-cheng, TONG Xue-dong, ZHANG Kai, XIAO Da, RONG Yu-hang, ZHOU Yu-di, LIU Chong, LIU Dong. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. doi: 10.37188/CO.2020-0136
Citation: TONG Yi-cheng, TONG Xue-dong, ZHANG Kai, XIAO Da, RONG Yu-hang, ZHOU Yu-di, LIU Chong, LIU Dong. Polarization lidar gain ratio calibration method: a comparison[J]. Chinese Optics, 2021, 14(3): 685-703. doi: 10.37188/CO.2020-0136

Polarization lidar gain ratio calibration method: a comparison

Funds:  Supported by National Key Research and Development Program of China (No. 2016YFC1400900); National Natural Science Foundation of China (No. 41775023); Excellent Young Scientist Program of Zhejiang Provincial Natural Science Foundation of China (No. LR19D050001)
More Information
  • Author Bio:

    Tong Yicheng (1994—), male, born in Ningbo City, Zhejiang Province. He is a doctoral candidate. In 2018, he obtained his bachelor's degree from Changchun University of Science and Technology. He is mainly engaged in the research of atmospheric remote sensing lidar. E-mail: yichengtong@zju.edu.cn

    Liu Dong (1982—), male, born in Dalian City, Liaoning Province. He is a doctor, professor and doctoral supervisor. He obtained his bachelor's degree and doctor's degree from Zhejiang University in 2005 and 2010 respectively. He is mainly engaged in the research of photoelectric detection and lidar. E-mail: liudongopt@zju.edu.cn

  • Corresponding author: liudongopt@zju.edu.cn
  • Received Date: 10 Aug 2020
  • Rev Recd Date: 11 Sep 2020
  • Available Online: 24 Dec 2020
  • Publish Date: 14 May 2021
  • Gain ratio calibration error is one of the most significant factors affecting the accuracy of a polarization lidar depolarization ratio. This paper analyzes the basic principles of various existing gain ratio calibration methods and compares the advantages and disadvantages of the +45° method, ±45° method, ∆45° method, rotation fitting method and pseudo-depolarizer method in practice though experiments. Results show that: the ∆45° method, ±45° method and rotation fitting method are relatively accurate when the misalignment angle is small, but the operation of the ±45° method and rotation fitting method are more complicated. The +45° method still has a large calibration error without a misalignment angle. The pseudo-depolarizer method is the easiest to operate, but it is restricted by a non-ideal pseudo-depolarizer. Through comparison of theory and experiment, this paper provides a suggestion for the best choice of gain ratio calibration method. It is recommended that the ±45° method be used for calibration with a half-wave plate, and the pseudo-depolarizer method be used for calibration with a high-precision depolarizer.

     

  • loading
  • [1]
    SCHOTLAND R M, SASSEN K, STONE R. Observations by lidar of linear depolarization ratios for hydrometeors[J]. Journal of Applied Meteorology, 1971, 10(5): 1011-1017. doi: 10.1175/1520-0450(1971)010<1011:OBLOLD>2.0.CO;2
    [2]
    SASSEN K. Polarization in lidar: a review[J]. Proceedings of SPIE, 2003, 5158: 151-160. doi: 10.1117/12.507006
    [3]
    LIU D, YANG Y Y, ZHANG Y P, et al. Pattern recognition model for aerosol classification with atmospheric backscatter lidars: principles and simulations[J]. Journal of Applied Remote Sensing, 2015, 9(1): 096006. doi: 10.1117/1.JRS.9.096006
    [4]
    CHENG ZH T, LIU D, LUO J, et al. Tolerance evaluation for anti-reflection coatings in field-widened michelson spectroscopic filter[J]. Chinese Journal of Lasers, 2015, 42(8): 0813002. (in Chinese) doi: 10.3788/CJL201542.0813002
    [5]
    QIU J W, XIA H Y, SHANGGUAN M J, et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single-photon detector[J]. Optics Letters, 2017, 42(21): 4454-4457. doi: 10.1364/OL.42.004454
    [6]
    GOBBI G P, BARNABA F, GIORGI R, et al. Altitude-resolved properties of a Saharan dust event over the Mediterranean[J]. Atmospheric Environment, 2000, 34(29-30): 5119-5127. doi: 10.1016/S1352-2310(00)00194-1
    [7]
    DIONISI D, BARNABA F, COSTABILE F, et al. Retrieval of aerosol parameters from continuous h24 lidar-ceilometer measurements[J]. EPJ Web of Conferences, 2016, 119(4): 23004.
    [8]
    BINIETOGLOU I, AMODEO A, D’AMICO G, et al. Examination of possible synergy between lidar and ceilometer for the monitoring of atmospheric aerosols[J]. Proceedings of SPIE, 2011, 8182: 818209. doi: 10.1117/12.897530
    [9]
    CAIRO F, DI DONFRANCESCO G, ADRIANI A, et al. Comparison of various linear depolarization parameters measured by lidar[J]. Applied Optics, 1999, 38(21): 4425-4432. doi: 10.1364/AO.38.004425
    [10]
    LUO J, LIU D, XU P T, et al. High-precision polarizing beam splitting system based on polarizing beam splitter[J]. Chinese Journal of Lasers, 2016, 43(12): 1210001. (in Chinese) doi: 10.3788/CJL201643.1210001
    [11]
    BEHRENDT A, NAKAMURA T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature[J]. Optics Express, 2002, 10(16): 805-817. doi: 10.1364/OE.10.000805
    [12]
    YOUNG A T. Rayleigh scattering[J]. Physics Today, 1982, 35(1): 42-48. doi: 10.1063/1.2890003
    [13]
    SHE C Y. Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars[J]. Applied Optics, 2001, 40(27): 4875-4884. doi: 10.1364/AO.40.004875
    [14]
    LUO J, LIU D, HUANG Z H, et al. Polarization properties of receiving telescopes in atmospheric remote sensing polarization lidars[J]. Applied Optics, 2017, 56(24): 6837-6845. doi: 10.1364/AO.56.006837
    [15]
    FREUDENTHALER V, ESSELBORN M, WIEGNER M, et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006[J]. Tellus B:Chemical and Physical Meteorology, 2009, 61(1): 165-179. doi: 10.1111/j.1600-0889.2008.00396.x
    [16]
    SASSEN K, BENSON S. A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: microphysical properties derived from lidar depolarization[J]. Journal of the Atmospheric Sciences, 2001, 58(15): 2103-2112.
    [17]
    LUO J, LIU D, BI L, et al. Rotating a half-wave plate by 45°: an ideal calibration method for the gain ratio in polarization lidars[J]. Optics Communications, 2018, 407: 361-366. doi: 10.1016/j.optcom.2017.09.065
    [18]
    ALVAREZ J M, VAUGHAN M A, HOSTETLER C A, et al. Calibration technique for polarization-sensitive lidars[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(5): 683-699. doi: 10.1175/JTECH1872.1
    [19]
    MATTIS I, TESCHE M, GREIN M, et al. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme[J]. Applied Optics, 2009, 48(14): 2742-2751. doi: 10.1364/AO.48.002742
    [20]
    HUNT W H, WINKER D M, VAUGHAN M A, et al. CALIPSO lidar description and performance assessment[J]. Journal of Atmospheric and Oceanic Technology, 2008, 26(7): 1214-1228.
    [21]
    QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
    [22]
    YANG Z J, CHEN F, LI CH, et al. Transient effect of dead time of photon-counting in micro-pulse lidar[J]. Optics and Precision Engineering, 2015, 23(2): 408-414. (in Chinese) doi: 10.3788/OPE.20152302.0408
    [23]
    DUAN L L, LIU D, ZHANG Y P, et al. Lidar data gluing technology based on hybrid intelligent algorithm[J]. Acta Optica Sinica, 2017, 37(6): 0601002. (in Chinese) doi: 10.3788/AOS201737.0601002
    [24]
    LUO J, LIU D, WANG B Y, et al. Effects of a nonideal half-wave plate on the gain ratio calibration measurements in polarization lidars[J]. Applied Optics, 2017, 56(29): 8100-8108. doi: 10.1364/AO.56.008100
    [25]
    D'AMICO G, AMODEO A, MATTIS I, et al. EARLINET single calculus chain - technical - Part 1: pre-processing of raw lidar data[J]. Atmospheric Measurement Techniques, 2016, 9(2): 491-507. doi: 10.5194/amt-9-491-2016
    [26]
    LIU Q, LIU CH, ZHU X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi: 10.3788/co.20201301.0148
    [27]
    LU X Y, LI X B, QIN W B, et al. Retrieval of horizontal distribution of aerosol mass concentration by micro pulse lidar[J]. Optics and Precision Engineering, 2017, 25(7): 1697-1704. (in Chinese)
    [28]
    CHENG ZH T, LIU D, LUO J, et al. Influences analysis of the spectral filter transmission on the performance of high-spectral-resolution lidar[J]. Acta Optica Sinica, 2014, 34(8): 0801003. (in Chinese) doi: 10.3788/AOS201434.0801003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views(2591) PDF downloads(235) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return