Volume 14 Issue 3
May  2021
Turn off MathJax
Article Contents
ZHANG Ying, MA Chao-qun, ZHU Shi-jun, LIU Xiao-xu, CAI He, AN Guo-fei, WANG You. Suppression of the influence of atmospheric turbulence during the propagation of a twisted Laguerre-Gaussian correlated beam[J]. Chinese Optics, 2021, 14(3): 704-716. doi: 10.37188/CO.2020-0138
Citation: ZHANG Ying, MA Chao-qun, ZHU Shi-jun, LIU Xiao-xu, CAI He, AN Guo-fei, WANG You. Suppression of the influence of atmospheric turbulence during the propagation of a twisted Laguerre-Gaussian correlated beam[J]. Chinese Optics, 2021, 14(3): 704-716. doi: 10.37188/CO.2020-0138

Suppression of the influence of atmospheric turbulence during the propagation of a twisted Laguerre-Gaussian correlated beam

Funds:  Supported by Fundamental Research Funds for the Central Universities (No. 30919011293)
More Information
  • Author Bio:

    Zhang Ying (1997—), female, born in Chongqing City. She is a Master Degree candidate. In 2019, she obtained her bachelor's degree from Nanjing University of Science and Technology. She is mainly engaged in the research on beam transmission, laser application and laser processing. E-mail: 466122139@qq.com

    WANG You (1966—), male, born in Lianyungang City, Jiangsu Province. He is a doctor of engineering, professor and doctoral supervisor. He is mainly engaged in the research on laser technology, laser application, optical engineering, guided wave optics, quantum optics, biomedical optics, etc. E-mail: youwang_2007@aliyun.com

  • Received Date: 10 Aug 2020
  • Rev Recd Date: 07 Sep 2020
  • Available Online: 29 Mar 2021
  • Publish Date: 14 May 2021
  • During its propagation in atmospheric turbulence, the optical properties of a laser beam will be changed by the surrounding environment. Compared with a completely coherent laser, a partially coherent laser can more strongly resist the influence of atmospheric turbulence. In this paper, a twisted Laguerre-Gaussian correlated beam was employed to deduce a cross-spectral density function for propagation in atmospheric turbulence. The cross-spectral density and M2 factor were also constructed by using the extended Huygens-Fresnel diffraction integral principle, Wigner distribution function, basic properties of the twisted phase, and power spectrum model of non-Kolmogorov turbulence. Then, the influence of atmospheric turbulence on the beam was numerically simulated, and the results were compared with those for different twist factors, transverse coherence parameters and mode orders. It has been demonstrated that a beam with a high twist factor, low transverse parameter, and high mode order can be used to effectively suppress the influence of atmospheric turbulence.

     

  • loading
  • [1]
    RICKLIN J C, DAVIDSON F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866. doi: 10.1364/JOSAA.20.000856
    [2]
    WANG S C, LI X P. Wavefront manipulation of tightly focused cylindrical vector beams and its applications[J]. Chinese Optics, 2016, 9(2): 185-202. (in Chinese) doi: 10.3788/co.20160902.0185
    [3]
    LOU Y, CHEN CH Y, ZHAO Y W, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese) doi: 10.3788/co.20171006.0768
    [4]
    WANG J, HUANG H K, CHEN Y K, et al. Twisted partially coherent array sources and their transmission in anisotropic turbulence[J]. Optics Express, 2018, 26(20): 25974-25988. doi: 10.1364/OE.26.025974
    [5]
    CAO M H, WU X, YANG SH X, et al. BER performance of Faster-than-Nyquist communications under Log-normal turbulence channel[J]. Optics and Precision Engineering, 2020, 28(2): 465-473. (in Chinese)
    [6]
    SIMON R, MUKUNDA N. Twisted gaussian schell-model beams[J]. Journal of the Optical Society of America A, 1993, 10(1): 95-109. doi: 10.1364/JOSAA.10.000095
    [7]
    FRIBERG A T, TERVONEN E, TURUNEN J. Interpretation and experimental demonstration of twisted Gaussian Schell-model beams[J]. Journal of the Optical Society of America A, 1994, 11(6): 1818-1826. doi: 10.1364/JOSAA.11.001818
    [8]
    GORI F, SANTARSIERO M. Devising genuine spatial correlation functions[J]. Optics Letters, 2007, 32(24): 3531-3533. doi: 10.1364/OL.32.003531
    [9]
    BORGHI R, GORI F, GUATTARI G, et al. Twisted Schell-model beams with axial symmetry[J]. Optics Letters, 2015, 40(19): 4504-4507. doi: 10.1364/OL.40.004504
    [10]
    BORGHI R. Twisting partially coherent light[J]. Optics Letters, 2018, 43(8): 1627-1630. doi: 10.1364/OL.43.001627
    [11]
    GORI F, SANTARSIERO M. Devising genuine twisted cross-spectral densities[J]. Optics Letters, 2018, 43(3): 595-598. doi: 10.1364/OL.43.000595
    [12]
    CAI Y J, ZHU SH J. Orbital angular moment of a partially coherent beam propagating through an astigmatic ABCD optical system with loss or gain[J]. Optics Letters, 2014, 39(7): 1968-1971. doi: 10.1364/OL.39.001968
    [13]
    LIU M W, LI Y CH. Propagation of OFDM-OAM optical signal in atmospheric turbulence[J]. Acta Optica Sinica, 2019, 39(7): 0706002. (in Chinese) doi: 10.3788/AOS201939.0706002
    [14]
    WANG H Q, SONG L H, CAO M H, et al. Compressed sensing detection of optical spatial modulation signal in turbulent channel[J]. Optics and Precision Engineering, 2018, 26(11): 2669-2674. (in Chinese) doi: 10.3788/OPE.20182611.2669
    [15]
    REN J Y, SUN H Y, ZHAO Y ZH, et al. Light intensity and spatial coherence characteristics of laser coherent detection in a turbulent atmosphere[J]. Chinese Optics, 2020, 13(4): 728-736. (in Chinese) doi: 10.37188/CO.2019-0194
    [16]
    ZHUANG Z B, CHEN X, TAI H D, et al. Turbulence alerting algorithm based on singular value decomposition of Lidar[J]. Optics and Precision Engineering, 2019, 27(3): 671-679. (in Chinese) doi: 10.3788/OPE.20192703.0671
    [17]
    LUTOMIRSKI R F, YURA H T. Propagation of a finite optical beam in an inhomogeneous medium[J]. Applied Optics, 1971, 10(7): 1652-1658. doi: 10.1364/AO.10.001652
    [18]
    FEIZULIN Z I, KRAVTSOV Y A. Broadening of a laser beam in a turbulent medium[J]. Radiophysics and Quantum Electronics, 1967, 10(1): 33-35. doi: 10.1007/BF01038157
    [19]
    TOSELLI I, ANDREWS L C, PHILLIPS R L, et al. Free-space optical system performance for laser beam propagation through non-Kolmogorov turbulence[J]. Optical Engineering, 2008, 47(2): 026003. doi: 10.1117/1.2870113
    [20]
    JI X L, CHEN X W, LÜ B D. Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2008, 25(1): 21-28. doi: 10.1364/JOSAA.25.000021
    [21]
    SHIRAI T, DOGARIU A, WOLF E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Optics Letters, 2003, 28(8): 610-612. doi: 10.1364/OL.28.000610
    [22]
    SHIRAI T, DOGARIU A, WOLF E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2003, 20(6): 1094-1102. doi: 10.1364/JOSAA.20.001094
    [23]
    ZHU SH J, CAI Y J, KOROTKOVA O. Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam[J]. Optics Express, 2010, 18(12): 12587-12598. doi: 10.1364/OE.18.012587
    [24]
    SANTARSIERO M, GORI F, BORGHI R, et al. Spreading properties of beams radiated by partially coherent Schell-model sources[J]. Journal of the Optical Society of America A, 1999, 16(1): 106-112. doi: 10.1364/JOSAA.16.000106
    [25]
    WANG F, YU J Y, LIU X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203. (in Chinese) doi: 10.7498/aps.67.20180877
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(2031) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return