Volume 14 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
WANG Lan, JIN Guang Yong, DONG Yuan, WANG Chao. Double pumped composite cavity 501 nm cyan laser with tunable injection power ratio[J]. Chinese Optics, 2021, 14(2): 329-335. doi: 10.37188/CO.2020-0161
Citation: WANG Lan, JIN Guang Yong, DONG Yuan, WANG Chao. Double pumped composite cavity 501 nm cyan laser with tunable injection power ratio[J]. Chinese Optics, 2021, 14(2): 329-335. doi: 10.37188/CO.2020-0161

Double pumped composite cavity 501 nm cyan laser with tunable injection power ratio

doi: 10.37188/CO.2020-0161
More Information
  • Corresponding author: jgycust@163.com
  • Received Date: 04 Sep 2020
  • Rev Recd Date: 09 Oct 2020
  • Available Online: 09 Mar 2021
  • Publish Date: 23 Mar 2021
  • In order to explore the theoretical and technical basis for the application of high accuracy laser near 500 nm, a double pump source composite cavity combined with nonlinear sum frequency conversion is used to realize zero gain competition of two kinds of fundamental frequency laser in the cavity. This method can improve the output power of fundamental frequency laser, as well as carry out multiple nonlinear frequency conversion in the composite cavity. By adjusting the fundamental frequency laser injection power ratio, the photon number ratio in the cavity reaches 1∶1, which effectively improves the optical-to-optical conversion efficiency and sum-frequency output power. The theoretical model established for the first time is verified experimentally, and Nd:YAG and Nd:YVO4 are used as gain media to obtain 946 nm and 1064 nm fundamental frequency laser output respectively. LBO is sum-frequency crystal. The 946 nm and 1064 nm fundamental frequency laser without gain competition is realized by using the double pump source structure. By adjusting the injection LBO optical power, the sum frequency conversion efficiency and output power are researched when the injection power ratio is different. Finally, the maximum output power of 501 nm cyan laser is 923 mW when the injection power ratio is 1.48∶1 (i.e. the photon number ratio in the cavity is 1∶1).

     

  • loading
  • [1]
    谢仕永, 王彩丽, 薄勇, 等. 高功率准连续微秒脉冲钠导星激光[J]. 光学 精密工程,2017,25(10):2661-2667. doi: 10.3788/OPE.20172510.2661

    XIE SH Y, WANG C L, BO Y, et al. High-power quasi-continuous microsecond pulse sodium guide star laser[J]. Optics and Precision Engineering, 2017, 25(10): 2661-2667. (in Chinese) doi: 10.3788/OPE.20172510.2661
    [2]
    吴春婷, 常奥磊, 温雅, 等. 单掺Nd3+双波长全固态激光器研究进展[J]. 发光学报,2020,41(4):414-428. doi: 10.3788/fgxb20204104.0414

    WU CH T, CHANG A L, WEN Y, et al. Research progress of Nd3+-doped dual-wavelength all-solid-state lasers[J]. Chinese Journal of Luminescence, 2020, 41(4): 414-428. (in Chinese) doi: 10.3788/fgxb20204104.0414
    [3]
    黄元庆, 杜晖. 全固化SHG蓝光激光器的研究[J]. 发光学报,1998,19(1):45-49. doi: 10.3321/j.issn:1000-7032.1998.01.009

    HUANG Y Q, DU H. Study of all solid state SHG blue laser[J]. Chinese Journal of Luminescence, 1998, 19(1): 45-49. (in Chinese) doi: 10.3321/j.issn:1000-7032.1998.01.009
    [4]
    LÜ Y F, ZHANG X H, XIA J, et al. Diode-pumped Nd:LuVO4-Nd:YVO4 laser at 492 nm with intracavity sum-frequency-mixing in LiB3O6[J]. Laser Physics, 2010, 20(9): 1810-1813. doi: 10.1134/S1054660X10170081
    [5]
    HERAULT E, BALEMBOIS F, GEORGES P, et al. 1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm[J]. Optics Letters, 2008, 33(14): 1632-1634. doi: 10.1364/OL.33.001632
    [6]
    王君光, 李永亮, 田迎华, 等. 全固态腔内和频488 nm连续蓝光激光器[J]. 中国激光,2010,37(7):1669-1672. doi: 10.3788/CJL20103707.1669

    WANG J G, LI Y L, TIAN Y H, et al. All-solid-state continuous-wave all-intracavity sum-frequency mixing blue laser at 488 nm[J]. Chinese Journal of Lasers, 2010, 37(7): 1669-1672. (in Chinese) doi: 10.3788/CJL20103707.1669
    [7]
    姜忠明, 陈殿仁. 全固态复合内腔和频570 nm连续波黄光激光器[J]. 光学 精密工程,2010,18(4):805-808.

    JIANG ZH M, CHEN D R. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency yellow laser at 570 nm[J]. Optics and Precision Engineering, 2010, 18(4): 805-808. (in Chinese)
    [8]
    范嗣强, 李麒麟, 路永乐. 基于LD双端面泵浦的Nd:YAG高效率倍频激光器[J]. 发光学报,2018,39(6):830-837. doi: 10.3788/fgxb20183906.0830

    FAN S Q, LI Q L, LU Y L. Experimental study on high efficiency double frequency laser with LD dual pump Nd:YAG[J]. Chinese Journal of Luminescence, 2018, 39(6): 830-837. (in Chinese) doi: 10.3788/fgxb20183906.0830
    [9]
    谢仕永, 王久旺, 孙勇, 等. 垂直腔面发射激光端面泵浦的高能量调Q Nd:YAG激光[J]. 光学 精密工程,2020,28(3):558-564. doi: 10.3788/OPE.20202803.0558

    XIE SH Y, WANG J W, SUN Y, et al. VCSEL end-pumped high-energy Q-switched Nd:YAG laser[J]. Optics and Precision Engineering, 2020, 28(3): 558-564. (in Chinese) doi: 10.3788/OPE.20202803.0558
    [10]
    JACQUEMET M, DRUON F, BALEMBOIS F, et al. Single-frequency operation of diode-pumped Yb: KYW at 1003.4 nm and 501.7 nm by intracavity second harmonic generation[J]. Applied Physics B, 2006, 85(1): 69-72.
    [11]
    HAO E J, LI T, WANG Z D. High power single-longitudinal-mode cyan laser at 500.8 nm[J]. Laser Physics, 2012, 22(5): 900-903. doi: 10.1134/S1054660X12050118
    [12]
    付喜宏, 彭航宇, 单肖楠, 等. LD抽运Nd:YAG/Nd:YVO4腔内和频500.9 nm激光器[J]. 中国激光,2013,40(6):0602012. doi: 10.3788/CJL201340.0602012

    FU X H, PENG H Y, SHAN X N, et al. Diode-pumped Nd:YAG/Nd:YVO4 intracavity sum-frequency mixing laser at 500.9 nm[J]. Chinese Journal of Lasers, 2013, 40(6): 0602012. (in Chinese) doi: 10.3788/CJL201340.0602012
    [13]
    TAWFIEQ M, JENSEN O B, HANSEN A K, et al. Efficient generation of 509 nm light by sum-frequency mixing between two tapered diode lasers[J]. Optics Communications, 2015, 339: 137-140. doi: 10.1016/j.optcom.2014.11.078
    [14]
    LAN R J, CHENG H, YANG G. Continuous wave Yb: YCOB cyan lasers with KTP as the sum-frequency converter[J]. Optics Communications, 2015, 357: 169-171. doi: 10.1016/j.optcom.2015.09.008
    [15]
    姚建铨, 徐德刚. 全固态激光及非线性光学频率变换技术[M]. 北京: 科学出版社, 2007: 652-706.

    YAO J Q, XU D G. All Solid State Laser and Nonlinear Optical Frequency Conversion Technology[M]. Beijing: Science Press, 2007: 652-706.
    [16]
    SVELTO O. Principles of Lasers[M]. HANNA D C, Trans. New York: Plenum Press, 1976: 255-256.
    [17]
    于永吉. 447 nm蓝光激光技术研究[D]. 长春: 长春理工大学, 2010: 25-40.

    YU Y J. Investigations on 447 nm blue laser technology[D]. Changchun: Changchun University of Science and Technology, 2010: 25-40.
    [18]
    KOECHNER W. Solid-State Laser Engineering[M]. 5th ed. Beijing: World Publishing Corporation, 2005: 79-97.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(1193) PDF downloads(65) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return