Volume 14 Issue 3
May  2021
Turn off MathJax
Article Contents
ZHANG Shen-hua, YANG Yan-xi, QIN Qiao-meng. A fast blind denoising method for grating image[J]. Chinese Optics, 2021, 14(3): 596-604. doi: 10.37188/CO.2020-0166
Citation: ZHANG Shen-hua, YANG Yan-xi, QIN Qiao-meng. A fast blind denoising method for grating image[J]. Chinese Optics, 2021, 14(3): 596-604. doi: 10.37188/CO.2020-0166

A fast blind denoising method for grating image

Funds:  Supported by National Key R&D Program of China (No. 2018YFB1703000); Key R&D Program of Shaanxi Province (No. 2020ZDLGR07-06); Collaborative Innovation Center of Shaanxi Province for Green Manufacturing of Modern Equipment (No. 304-210891702)
  • Received Date: 11 Sep 2020
  • Rev Recd Date: 21 Oct 2020
  • Available Online: 09 Apr 2021
  • Publish Date: 14 May 2021
  • The three-dimensional measurement technology based on the projection of sine grating fringe image is a hot-topic. However, due to the influence of noise, the quality of the captured grating image is worse, resulting in the disturbance of the extracted phase, which directly determines the accuracy of the measurement. Since the noise is unknown in actual measurement, a blind denoising method is proposed in this paper. Firstly, according to the residual model, the grating fringe image is separated into the true value and the noise, then the Principal Component Analysis (PCA) technology is introduced to estimate the variance of the noise. Finally, according to the estimated value of the variance, the filtering on multi-frame fringe images is replaced by employing Gaussian filtering on the phase map. In contrast to other methods, the results of the proposed method showed that the Root Mean Square Error (RMSE) decreased by 88.5% (up to most), which indicated that the phase values of the proposed method were closer to the ground-truth of the measured object. By employing the proposed method, the phase disturbance caused by noise were significantly suppressed in the shortest execution time. The proposed method can quickly deal with the phase error caused by the noise of the grating image and has strong practicability in the grating image projection measurement.

     

  • loading
  • [1]
    王建华, 杨延西. 基于彩色编码光栅投影的双N步相移轮廓术[J]. 中国光学,2019,12(3):616-627. doi: 10.3788/co.20191203.0616

    WANG J H, YANG Y X. Double N-step phase-shifting profilometry using color-encoded grating projection[J]. Chinese Optics, 2019, 12(3): 616-627. (in Chinese) doi: 10.3788/co.20191203.0616
    [2]
    张申华, 杨延西. 一种针对投影仪gamma效应的相位误差补偿方法[J]. 仪器仪表学报,2019,40(11):1-8.

    ZHANG SH H, YANG Y X. A phase error compensation method for the gamma effect of projector[J]. Chinese Journal of Scientific Instrument, 2019, 40(11): 1-8. (in Chinese)
    [3]
    邓吉, 李健, 封皓, 等. 不连续相位跳变点的三维深度分割[J]. 光学 精密工程,2019,27(11):2459-2466. doi: 10.3788/OPE.20192711.2459

    DENG J, LI J, FENG H, et al. Three-dimensional depth segmentation technique utilizing discontinuities of wrapped phase sequence[J]. Optics and Precision Engineering, 2019, 27(11): 2459-2466. (in Chinese) doi: 10.3788/OPE.20192711.2459
    [4]
    丁超, 唐力伟, 曹立军, 等. 深孔内表面结构光图像几何畸变校正[J]. 光学 精密工程,2018,26(10):2555-2564. doi: 10.3788/OPE.20182610.2555

    DING CH, TANG L W, CAO L J, et al. Geometric distortion correction for structured-light image of deep-hole inner-surface[J]. Optics and Precision Engineering, 2018, 26(10): 2555-2564. (in Chinese) doi: 10.3788/OPE.20182610.2555
    [5]
    韩玉兰, 赵永平, 王启松, 等. 稀疏表示下的噪声图像超分辨率重构[J]. 光学 精密工程,2017,25(6):1619-1626. doi: 10.3788/OPE.20172506.1619

    HAN Y L, ZHAO Y P, WANG Q S, et al. Reconstruction of super resolution for noise image under the sparse representation[J]. Optics and Precision Engineering, 2017, 25(6): 1619-1626. (in Chinese) doi: 10.3788/OPE.20172506.1619
    [6]
    谢斌, 黄安, 黄辉. 本征图像分解的稀疏表示彩色图像去噪算法[J]. 液晶与显示,2019,34(11):1104-1114. doi: 10.3788/YJYXS20193411.1104

    XIE B, HUANG A, HUANG H. Color image denoising algorithm based on intrinsic image decomposition and sparse representation[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(11): 1104-1114. (in Chinese) doi: 10.3788/YJYXS20193411.1104
    [7]
    马逸东, 周顺勇. 基于连通性检测的图像椒盐噪声滤波算法[J]. 液晶与显示,2020,35(2):167-172. doi: 10.3788/YJYXS20203502.0167

    MA Y D, ZHOU SH Y. Salt and pepper noise filtering algorithm based on connectivity detection[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(2): 167-172. (in Chinese) doi: 10.3788/YJYXS20203502.0167
    [8]
    WANG J H, YANG Y X. An efficient phase error self-compensation algorithm for nonsinusoidal gating fringes in phase-shifting profilometry[J]. Review of Scientific Instrument, 2018, 89(6): 063115. doi: 10.1063/1.5025593
    [9]
    WANG H X, QIAN K M, GAO W J, et al. Fringe pattern denoising using coherence-enhancing diffusion[J]. Optics Letters, 2009, 34(8): 1141-1143. doi: 10.1364/OL.34.001141
    [10]
    TANG CH, HAN L, REN H W, et al. Second-order oriented partial-differential equations for denoising in electronic-speckle-pattern interferometry fringes[J]. Optics Letters, 2008, 33(19): 2179-2181. doi: 10.1364/OL.33.002179
    [11]
    ZHOU Q L, TANG CH, LI B Y, et al. Adaptive oriented PDEs filtering methods based on new controlling speed function for discontinuous optical fringe patterns[J]. Optics and Lasers in Engineering, 2018, 100: 111-117. doi: 10.1016/j.optlaseng.2017.07.018
    [12]
    DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455. doi: 10.1093/biomet/81.3.425
    [13]
    PYATYKH S, HESSER J, ZHENG L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 2013, 22(2): 687-699. doi: 10.1109/TIP.2012.2221728
    [14]
    LIU X H, TANAKA M, OKUTOMI M. Single-image noise level estimation for blind denoising[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5226-5237. doi: 10.1109/TIP.2013.2283400
    [15]
    汪浩然, 夏克文, 任苗苗, 等. 结合PCA及字典学习的高光谱图像自适应去噪方法[J]. 计算机应用,2016,36(12):3411-3417, 3422. doi: 10.11772/j.issn.1001-9081.2016.12.3411

    WANG H R, XIA K W, REN M M, et al. Adaptive denoising method of hyperspectral remote sensing image based on PCA and dictionary learning[J]. Journal of Computer Applications, 2016, 36(12): 3411-3417, 3422. (in Chinese) doi: 10.11772/j.issn.1001-9081.2016.12.3411
    [16]
    肖进胜, 朱力, 赵博强, 等. 基于主成分分析的分块视频噪声估计[J]. 自动化学报,2018,44(9):1618-1625.

    XIAO J SH, ZHU L, ZHAO B Q, et al. Block-based video noise estimation algorithm via principal component analysis[J]. Acta Automatica Sinica, 2018, 44(9): 1618-1625. (in Chinese)
    [17]
    乔双, 吴晓阳, 赵辰一, 等. 基于PCA和BM3D的噪声估计方法及其在中子图像去噪中的应用[J]. 原子能科学技术,2018,52(4):729-736. doi: 10.7538/yzk.2017.youxian.0457

    QIAO SH, WU X Y, ZHAO CH Y, et al. Noise level estimation method based on PCA and BM3D for neutron image denoising[J]. Atomic Energy Science and Technology, 2018, 52(4): 729-736. (in Chinese) doi: 10.7538/yzk.2017.youxian.0457
    [18]
    杨华. 基于稀疏主成分分析的图像噪声估计方法[J]. 液晶与显示,2019,34(9):913-920. doi: 10.3788/YJYXS20193409.0913

    YANG H. Image noise estimation method based on sparse principal component analysis[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(9): 913-920. (in Chinese) doi: 10.3788/YJYXS20193409.0913
    [19]
    叶杨, 徐志伟, 陈仁文, 等. 基于KPCA和SVM的直升机旋翼桨叶损伤源定位[J]. 电子测量与仪器学报,2020,34(4):118-123.

    YE Y, XU ZH W, CHEN R W, et al. Damage source location of helicopter rotor blade based on KPCA and SVM[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(4): 118-123. (in Chinese)
    [20]
    吴疆, 尤飞, 蒋平. 基于回归分析和主成分分析的噪声方差估计方法[J]. 电子与信息学报,2018,40(5):1195-1201. doi: 10.11999/JEIT170624

    WU J, YOU F, JIANG P. Noise variance estimation method based on regression analysis and principal component analysis[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1195-1201. (in Chinese) doi: 10.11999/JEIT170624
    [21]
    ZUO CH, HUANG L, ZHANG M L, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103. doi: 10.1016/j.optlaseng.2016.04.022
    [22]
    JIANG P, WANG Q, WU J. Efficient noise-level estimation based on principal image texture[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(7): 1987-1999.
    [23]
    TOWERS C E, TOWERS D P, JONES J D C. Absolute fringe order calculation using optimised multi-frequency selection in full-field profilometry[J]. Optics and Lasers in Engineering, 2005, 43(7): 788-800. doi: 10.1016/j.optlaseng.2004.08.005
    [24]
    ZUO CH, FENG SH J, HUANG L, et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 2018, 109: 23-59. doi: 10.1016/j.optlaseng.2018.04.019
    [25]
    MAO C L, LU R S, LIU Z J. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement[J]. Optics Communications, 2018, 419: 75-85. doi: 10.1016/j.optcom.2018.03.006
    [26]
    ZHANG CH W, ZHAO H, ZHANG L, et al. Full-field phase error detection and compensation method for digital phase-shifting fringe projection profilometry[J]. Measurement Science and Technology, 2015, 26(3): 035201. doi: 10.1088/0957-0233/26/3/035201
    [27]
    GAI SH Y, DA F P, LIU CH. Multiple-gamma-value based phase error compensation method for phase measuring profilometry[J]. Applied Optics, 2018, 57(35): 10290-10299. doi: 10.1364/AO.57.010290
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views(1599) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return