Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LI Xiang-jun, HOU Xiao-mei, CHENG Gang, QIU Guo-hua, YAN De-xian, LI Jiu-sheng. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. doi: 10.37188/CO.2020-0171
Citation: LI Xiang-jun, HOU Xiao-mei, CHENG Gang, QIU Guo-hua, YAN De-xian, LI Jiu-sheng. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. doi: 10.37188/CO.2020-0171

Simulation on tunable graphene metasurface focusing mirror based on flexible substrate

Funds:  Supported by the National Natural Science Foundation of China (No. 62001444, No. 61871355, No. 61831012); Natural Science Foundation of Zhejiang Province (No. LQ20F010009, No. LY18F010016); Basic Public Welfare Research Project of Zhejiang Province (No. LGF19F010003)
More Information
  • Corresponding author: yandexian1991@cjlu.edu.cn
  • Received Date: 25 Sep 2020
  • Rev Recd Date: 13 Oct 2020
  • Available Online: 25 Jan 2021
  • Publish Date: 01 Jul 2021
  • Ultra-thin focusing mirror with adjustable focal length has important applications in compact systems, especially for on-chip terahertz spectroscopy, imaging systems and communication systems. By changing the geometric size and adjusting the chemical potential, the graphene subwavelength reflective structure can achieve a phase of 0~2π. Combined with the above properties and the dynamic stretching of polydimethylsiloxane (PDMS) flexible substrate, the ultra-thin terahertz focusing reflector with large dynamic adjustment range can be realized. In this paper, a dynamic focusing graphene metasurface focusing reflector based on flexible substrate with a working frequency of 1.0 THz, a width of 12 mm, a focal length of 60 mm and a thickness of 75 μm is designed and investigated. Firstly, by adjusting the chemical potential and width of the graphene unit strips, the reflective phase covers the 0~2π, and the reflective focusing effect can be achieved according to the predesigned phase spatial distribution. Then, the dynamic adjustment of the focal length of the reflective mirror can be realized by laterally stretching the flexible substrate. The simulation results demonstrate that when the length of the flexible substrate varies from 100% to 140%, the focal length of the reflective mirror increases from 53.4 mm to 112.1 mm, the dynamic focus range can reach 109.7% of the minimum focal length, and the focus efficiency decreases from 69.7% to 46.8%. In addition, the performance of the reflective mirror in a wide frequency range has also been investigated, and the simulation results demonstrate that the good dynamic focusing for incident plane waves in the frequency range of 0.85~1.0 THz can be achieved. The proposed tunable metasurface design is highly versatile in the development of ultra-thin, multifunctional and tunable terahertz devices for various applications.

     

  • loading
  • [1]
    MANJAPPA M, SINGH R. Materials for terahertz optical science and technology[J]. Advanced Optical Materials, 2020, 8(3): 1901984. doi: 10.1002/adom.201901984
    [2]
    HE J W, DONG T, CHI B H, et al. Metasurfaces for terahertz wavefront modulation: a review[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2020, 41(6): 607-631. doi: 10.1007/s10762-020-00677-3
    [3]
    ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
    [4]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [5]
    林雨, 蒋春萍. 可调谐超构透镜的发展现状[J]. 中国光学,2020,13(1):43-61. doi: 10.3788/co.20201301.0043

    LIN Y, JIANG CH P. Recent progress in tunable metalenses[J]. Chinese Optics, 2020, 13(1): 43-61. (in Chinese) doi: 10.3788/co.20201301.0043
    [6]
    SHERROTT M C, HON P W C, FOUNTAINE K T, et al. Experimental demonstration of > 230 phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5): 3027-3034. doi: 10.1021/acs.nanolett.7b00359
    [7]
    BELOTELOV V I, KREILKAMP L E, AKIMOV I A, et al. Plasmon-mediated magneto-optical transparency[J]. Nature Communications, 2013, 4: 2128. doi: 10.1038/ncomms3128
    [8]
    LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    [9]
    LIU P X, ZHAO Y, QIN R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287): 797-800. doi: 10.1126/science.aaf5251
    [10]
    KOCH U, HOESSBACHER C, EMBORAS A, et al. Optical memristive switches[J]. Journal of Electroceramics, 2017, 39(1-4): 239-250. doi: 10.1007/s10832-017-0072-3
    [11]
    WANG K H, LI J SH, YAO J Q. Sensitive terahertz free space modulator using CsPbBr3 perovskite quantum dots–embedded metamaterial[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2020, 41(5): 557-567. doi: 10.1007/s10762-020-00680-8
    [12]
    WANG Y, CUI Z J, ZHU D Y, et al. Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface[J]. Optics Express, 2018, 26(12): 15343-15352. doi: 10.1364/OE.26.015343
    [13]
    HE J W, XIE ZH W, SUN W F, et al. Terahertz tunable metasurface lens based on vanadium dioxide phase transition[J]. Plasmonics, 2016, 11(5): 1285-1290. doi: 10.1007/s11468-015-0173-2
    [14]
    GUO J Y, WANG T, ZHAO H, et al. Reconfigurable terahertz metasurface pure phase holograms[J]. Advanced Optical Materials, 2019, 7(10): 1801696. doi: 10.1002/adom.201801696
    [15]
    LI SH Q, XU X W, VEETIL R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    [16]
    SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
    [17]
    ZHU W M, SONG Q H, YAN L B, et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743. doi: 10.1002/adma.201501943
    [18]
    BEHROOZINIA S, RAJABALIPANAH H, ABDOLALI A. Real-time terahertz wave channeling via multifunctional metagratings: a sparse array of all-graphene scatterers[J]. Optics Letters, 2020, 45(4): 795-798. doi: 10.1364/OL.383001
    [19]
    FAN Y CH, SHEN N H, ZHANG F L, et al. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances[J]. ACS Photonics, 2018, 5(4): 1612-1618. doi: 10.1021/acsphotonics.8b00057
    [20]
    HUANG Y C, LIN M F, CHANG C P. Landau levels and magneto-optical properties of graphene ribbons[J]. Journal of Applied Physics, 2008, 103(7): 073709. doi: 10.1063/1.2902455
    [21]
    DING P, LI Y, SHAO L, et al. Graphene aperture-based metalens for dynamic focusing of terahertz waves[J]. Optics Express, 2018, 26(21): 28038-28050. doi: 10.1364/OE.26.028038
    [22]
    HUANG Z G, HU B, LIU W G, et al. Dynamical tuning of terahertz meta-lens assisted by graphene[J]. Journal of the Optical Society of America B, 2017, 34(9): 1848-1854. doi: 10.1364/JOSAB.34.001848
    [23]
    CHEN D B, YANG J B, HUANG J, et al. The novel graphene metasurfaces based on split-ring resonators for tunable polarization switching and beam steering at terahertz frequencies[J]. Carbon, 2019, 154: 350-356. doi: 10.1016/j.carbon.2019.08.020
    [24]
    YIN ZH P, ZHENG Q, WANG K Y, et al. Tunable dual-band terahertz metalens based on stacked graphene metasurfaces[J]. Optics Communications, 2018, 429: 41-45. doi: 10.1016/j.optcom.2018.07.084
    [25]
    ZHANG Z, YAN X, LIANG L J, et al. The novel hybrid metal-graphene metasurfaces for broadband focusing and beam-steering in farfield at the terahertz frequencies[J]. Carbon, 2018, 132: 529-538. doi: 10.1016/j.carbon.2018.02.095
    [26]
    HAN S J, KIM S, KIM S, et al. Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules[J]. ACS Nano, 2020, 14(1): 1166-1175. doi: 10.1021/acsnano.9b09277
    [27]
    KAMALI S M, ARBABI E, ARBABI A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser &Photonics Reviews, 2016, 10(6): 1002-1008.
    [28]
    CALLEWAERT F, VELEV V, JIANG SH ZH, et al. Inverse-designed stretchable metalens with tunable focal distance[J]. Applied Physics Letters, 2018, 112(9): 091102. doi: 10.1063/1.5017719
    [29]
    杨渤, 程化, 陈树琪, 等. 基于傅里叶分析的超表面多维光场调控[J]. 光学学报,2019,39(1):86-104.

    YANG B, CHENG H, CHEN SH Q, et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Optica Sinica, 2019, 39(1): 86-104. (in Chinese)
    [30]
    CHEN M K, WU Y, FENG L, et al. Principles, Functions and Applications of Optical Meta-lens[J]. Advanced Optical Materials, 2021, 9(4): 2001414.
    [31]
    都妍, 武亚君, 张元, 等. 基于导电聚合物的太赫兹频率选择表面[J]. 太赫兹科学与电子信息学报,2019,17(2):205-208. doi: 10.11805/TKYDA201902.0205

    DU Y, WU Y J, ZHANG Y, et al. Terahertz frequency selective surface based on DMSO-doped PEDOT: PSS films[J]. Journal of Terahertz Science and Electronic Information Technology, 2019, 17(2): 205-208. (in Chinese) doi: 10.11805/TKYDA201902.0205
    [32]
    PANCHAKARLA L S, SUBRAHMANYAM K S, SAHA S K, et al. Synthesis, structure, and properties of boron- and nitrogen- doped graphene[J]. Advanced Materials, 2009, 21(46): 4726-4730.
    [33]
    WEI D CH, LIU Y Q, WANG Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758. doi: 10.1021/nl803279t
    [34]
    GUO B D, FANG L, ZHANG B H, et al. Graphene doping: a review[J]. Insciences Journal, 2011, 1(2): 80-89.
    [35]
    CHHIKARA M, GAPONENKO I, PARUCH P, et al. Effect of uniaxial strain on the optical Drude scattering in graphene[J]. 2D Materials, 2017, 4(2): 025081. doi: 10.1088/2053-1583/aa6c10
    [36]
    YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
    [37]
    ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6(1): 7069. doi: 10.1038/ncomms8069
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(2788) PDF downloads(205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return