Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
ZHANG Xiong-xing, LV Wen-tao, ZHANG Tian-yang, KOU Wan-ying, CHEN Qing-qing, WANG Wei. Design of optical wedge demodulation system for fiber Fabry-Perot sensor[J]. Chinese Optics, 2021, 14(5): 1259-1272. doi: 10.37188/CO.2020-0204
Citation: ZHANG Xiong-xing, LV Wen-tao, ZHANG Tian-yang, KOU Wan-ying, CHEN Qing-qing, WANG Wei. Design of optical wedge demodulation system for fiber Fabry-Perot sensor[J]. Chinese Optics, 2021, 14(5): 1259-1272. doi: 10.37188/CO.2020-0204

Design of optical wedge demodulation system for fiber Fabry-Perot sensor

Funds:  Supported by Natural Science Basic Research Project of Shaanxi Province (No. 2020JM-560); Key Scientific Research Project of Education Department of Shaanxi Province (No. 20JS060)
More Information
  • Author Bio:

    ZHANG Xiong-xing (1979—), male, born in Xiangyang City, Hubei Province. Master’s degree, associate professor. He is mainly engaged in the research of optical fiber sensing and optoelectronic measurement. E-mail: zhangxiongxing@xatu.edu.cn

    WANG Wei (1973—), male, born in Jiyuan, Henan Province. Doctoral degree, professor. He is mainly engaged in the research of optical fiber sensing and optoelectronic testing. E-mail: wangwei@xatu.edu.cn

  • Corresponding author: wangwei@xatu.edu.cn
  • Received Date: 23 Nov 2020
  • Rev Recd Date: 07 Jan 2021
  • Available Online: 12 Aug 2021
  • Publish Date: 18 Sep 2021
  • In order to realize the demodulation of the cavity length of the fiber-optic FP sensor, a new optical wedge-type non-scanning correlation demodulation system is proposed, and the characteristics and structure of the devices used in the system are analyzed and studied. First, by simulating the light sources with different spectral distributions and the optical wedges with different surface reflectivities, the correlation interference signals are analyzed and the optimal structure parameters of the system components are given. Then by comparing the light intensity distribution characteristics of the Powell prism and cylindrical lens on the linear array CCD, more uniform spectral distribution is achieved. Finally, the specific implementation scheme and data processing method of the demodulation system are given. The experimental results show that when the light source spectrum has a Gaussian distribution and large spectral width and the reflectivity of the wedge surface is $R = 0.5$, the characteristics of the correlation interference signal are obvious and convenient for demodulation. Finally, the demodulation system achieves the demodulation effect with an error of less than 0.025% within the cavity length range of 60 μm-100 μm. This optical wedge-type non-scanning correlation demodulation method can realize the sensing demodulation of the fiber-optic FP cavity and improve the power adaptability of different types of fiber-optic FP sensors.

     

  • loading
  • [1]
    FENG W L, PENG J, YU J H, et al. Double Fabry-Pérot fiber optic temperature sensor based on end-face corrosion[J]. Optics and Precision Engineering, 2019, 27(4): 766-770. (in Chinese) doi: 10.3788/OPE.20192704.0766
    [2]
    XU N, DAI M. Design of distributed optical fiber sensor for temperature and pressure measurement[J]. Chinese Optics, 2015, 8(4): 629-635. (in Chinese) doi: 10.3788/co.20150804.0629
    [3]
    POEGGEL S, TOSI D, FUSCO F, et al. Fiber-optic EFPI pressure sensors for in vivo urodynamic analysis[J]. IEEE Sensors Journal, 2014, 14(7): 2335-2340. doi: 10.1109/JSEN.2014.2310392
    [4]
    CHEN Q CH, ZHAO H, ZHANG W CH. External oil cavity coupled with EFPI partial discharge ultrasonic detection sensor[J]. Optics and Precision Engineering, 2020, 28(7): 1471-1479. (in Chinese) doi: 10.37188/OPE.20202807.1471
    [5]
    ZHU T, KE T, RAO Y J, et al. Miniature all-fiber Fabry-Perot interferometric high temperature sensor based on a thin film[J]. Optics and Precision Engineering, 2010, 18(5): 1054-1059. (in Chinese)
    [6]
    XIE J H, WANG F Y, PAN Y, et al. High resolution signal-processing method for extrinsic Fabry-Perot interferometric sensors[J]. Optical Fiber Technology, 2015, 22: 1-6. doi: 10.1016/j.yofte.2014.11.010
    [7]
    ZHANG Y N, HUANG J, LAN X W, et al. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry-Perot interferometer and intrinsic Fabry-Perot interferometer sensors[J]. Optical Engineering, 2014, 53(6): 067101. doi: 10.1117/1.OE.53.6.067101
    [8]
    JIANG X F, LIN CH, XIE H H, et al. Optic fiber MEMS pressure sensor based on white light interferometry[J]. Acta Photonica Sinica, 2014, 43(10): 1006003. (in Chinese) doi: 10.3788/gzxb20144310.1006003
    [9]
    MA G H, ZHANG J B, ZHANG H, et al. Resonant mode of Fabry-Perot microcavity regulated by metal surface plasmons[J]. Chinese Optics, 2019, 12(3): 649-662. (in Chinese) doi: 10.3788/co.20191203.0649
    [10]
    CHEN Q Q, TANG Y, WANG K N, et al. Characteristic analysis of correlation interference signals in optical wedge type fiber Fabry-Perot sensors[J]. Laser &Optoelectronics Progress, 2018, 55(11): 110603. (in Chinese)
    [11]
    HAN M, ZHANG Y, SHEN F B, et al. Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors[J]. Optics Letters, 2004, 29(15): 1736-1738. doi: 10.1364/OL.29.001736
    [12]
    YOSHINO T, KUROSAWA K, ITOH K, et al. Fiber-optic Fabry-Perot interferometer and its sensor applications[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10): 1612-1621. doi: 10.1109/TMTT.1982.1131298
    [13]
    LI J SH, ZHU Y, WANG N, et al. An algorithm for improving the signal stability of the fast fiber optic Fabry-Perot nonscanning correlation demodulation system[J]. Acta Photonica Sinica, 2015, 44(1): 0106005. (in Chinese) doi: 10.3788/gzxb20154401.0106005
    [14]
    WANG W, TANG Y, ZHANG X X, et al. Elliptical-fitting cavity length demodulation algorithm for compound fiber-optic Fabry-Perot pressure sensor with short cavity[J]. Acta Optica Sinica, 2019, 39(6): 0606001. (in Chinese) doi: 10.3788/AOS201939.0606001
    [15]
    ZHAO Y, WANG D H. Mathematical model of optical wedges for cross-correlation demodulation of cavity length of optical fiber Fabry-Pérot sensors[J]. Acta Optica Sinica, 2011, 31(1): 0106007. (in Chinese) doi: 10.3788/AOS201131.0106007
    [16]
    WU Y, XIA L, CAI N, et al. A highly precise demodulation method for fiber Fabry-Perot cavity through spectrum reconstruction[J]. IEEE Photonics Technology Letters, 2018, 30(5): 435-438. doi: 10.1109/LPT.2017.2787098
    [17]
    VOLKOV P V, GORYUNOV A V, LUK’YANOV A Y, et al. Fiber-optic temperature sensor based on low-coherence interferometry without scanning[J]. Optik, 2013, 124(15): 1982-1985. doi: 10.1016/j.ijleo.2012.06.043
    [18]
    MA ZH B, GUO T X, ZHANG T Y, et al. Compact Powell-lens-based low-coherence correlation interrogation system for fiber-optic Fabry-Perot sensors[J]. IEEE Photonics Journal, 2019, 11(4): 7102111.
    [19]
    CAI F H, TANG R N, WANG SH W, et al. A compact line-detection spectrometer with a Powell lens[J]. Optik, 2018, 155: 267-272. doi: 10.1016/j.ijleo.2017.11.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article views(1344) PDF downloads(114) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return