Volume 14 Issue 3
May  2021
Turn off MathJax
Article Contents
ZHOU Sheng, WANG Kai-xuan, LIU Ding-quan, HU Jin-chao, LI Yao-peng, WANG Shu-guang. Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands[J]. Chinese Optics, 2021, 14(3): 536-543. doi: 10.37188/CO.2020-0206
Citation: ZHOU Sheng, WANG Kai-xuan, LIU Ding-quan, HU Jin-chao, LI Yao-peng, WANG Shu-guang. Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands[J]. Chinese Optics, 2021, 14(3): 536-543. doi: 10.37188/CO.2020-0206

Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands

Funds:  Supported by National Natural Science Fundation of China (No. 61705248)
More Information
  • Corresponding author: dqliu@mail.sitp.ac.cn
  • Received Date: 26 Nov 2020
  • Rev Recd Date: 18 Dec 2020
  • Available Online: 05 Feb 2021
  • Publish Date: 14 May 2021
  • The dual-color (dual band-pass) filter is a new type of optical element that includes two precisely controlled spectral channels at any geometric position and can improve the target recognition ability of optical detection devices. Single crystal Ge is used as a substrate, and Ge and ZnSe are used as high (H) and low (L) reflective index thin film materials, respectively. An infrared dual-color filter is designed with two band-pass channels: 3.2~3.8 μm (channel 1) and 4.9~5.4 μm (channel 2). Thin films are fabricated by thermal evaporation in a high vacuum chamber, and the film thickness are monitored using the POEM (Percent of Optical Extreme Monitoring) strategy. At a working temperature of 100 K, the average transmittance of channel 1 was 94.2%, and its top ripple amplitude was 5.7%; the average transmittance of channel 2 was 96.5%, and its top ripple amplitude was 0.6%. In the cut-off range between the two channels (4.0~4.7 μm), the average transmittance was no more than 0.16%. The infrared dual-color filter has good optical stability, which is conducive to the recognition of high-speed moving targets.

     

  • loading
  • [1]
    LI P, CAI Q, ZHANG J G, et al. Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter[J]. Optics Express, 2019, 27(13): 17859-17867. doi: 10.1364/OE.27.017859
    [2]
    李宏光, 杨鸿儒, 薛战理, 等. 窄带光谱滤光法探测低温黑体太赫兹辐射[J]. 光学 精密工程,2013,21(6):1410-1416. doi: 10.3788/OPE.20132106.1410

    LI H G, YANG H R, XUE ZH L, et al. Terahertz radiation detection of low temperature blackbody based on narrowband spectral filter method[J]. Optics and Precision Engineering, 2013, 21(6): 1410-1416. (in Chinese) doi: 10.3788/OPE.20132106.1410
    [3]
    INOUE Y, HAMADA T, HASEGAWA M, et al. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters[J]. Applied Optics, 2016, 55(34): D22-D28. doi: 10.1364/AO.55.000D22
    [4]
    乔铁英, 蔡立华, 李宁, 等. 基于红外辐射特性系统实现对面目标测量[J]. 中国光学,2018,11(5):804-811. doi: 10.3788/co.20181105.0804

    QIAO T Y, CAI L H, LI N, et al. Opposite target measurement based on infrared radiation characteristic system[J]. Chinese Optics, 2018, 11(5): 804-811. (in Chinese) doi: 10.3788/co.20181105.0804
    [5]
    NOULKOW N, TAUBERT R D, MEINDL P, et al. Infrared filter radiometers for thermodynamic temperature determination below 660 °C[J]. International Journal of Thermophysics, 2009, 30(1): 131-143. doi: 10.1007/s10765-008-0458-1
    [6]
    朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J]. 红外与激光工程,2019,48(11):1104001. doi: 10.3788/IRLA201948.1104001

    ZHU X B, PENG ZH Y, CAO X C, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice[J]. Infrared and Laser Engineering, 2019, 48(11): 1104001. (in Chinese) doi: 10.3788/IRLA201948.1104001
    [7]
    JEONG M Y, MANG J Y. Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges[J]. Applied Optics, 2018, 57(8): 1962-1966. doi: 10.1364/AO.57.001962
    [8]
    TIKHONRAVOV A V, TRUBETSKOV M K, DEBELL G W. Application of the needle optimization technique to the design of optical coatings[J]. Applied Optics, 1996, 35(28): 5493-5508. doi: 10.1364/AO.35.005493
    [9]
    WANG Y Z, LIU D Q, ZHANG F SH. Design and fabrication of bi-color multilayer filters for mid- and far- infrared application[J]. Proceedings of SPIE, 2005, 5640: 42-48. doi: 10.1117/12.572842
    [10]
    蔡渊, 周晟, 刘定权. 基于组合Fabry-Perot膜系的中波红外双色滤光片设计[J]. 光学学报,2016,36(2):0222004. doi: 10.3788/AOS201636.0222004

    CAI Y, ZHOU SH, LIU D Q. Design of dual-band-pass optical filter based on combination of fabry-perot coatings in mid-infrared band[J]. Acta Optica Sinica, 2016, 36(2): 0222004. (in Chinese) doi: 10.3788/AOS201636.0222004
    [11]
    WILLEY R R. Simulation comparisons of monitoring strategies in narrow bandpass filters and antireflection coatings[J]. Applied Optics, 2014, 53(4): A27-A34. doi: 10.1364/AO.53.000A27
    [12]
    JANFAZA M, MANSOURI-BIRJANDI M A, TAVOUSI A. Proposal for a graphene nanoribbon assisted mid-infrared band-stop/band-pass filter based on Bragg gratings[J]. Optics Communications, 2019, 440: 75-82. doi: 10.1016/j.optcom.2019.01.062
    [13]
    STOLBERG-ROHR T, HAWKINS G J. Spectral design of temperature-invariant narrow bandpass filters for the mid-infrared[J]. Optics Express, 2015, 23(1): 580-596. doi: 10.1364/OE.23.000580
    [14]
    NOULKOW N, TAUBERT RD, MEINDL P, et al.. High-accuracy thermodynamic temperature measurements with near infrared filter radiometers[C]. Proceedings of the 10th International Conference on Infrared Sensors & Systems, Numberg, 2008: 219-224.
    [15]
    申振峰. 特定折射率材料及光学薄膜制备[J]. 中国光学,2013,6(6):900-905.

    SHEN ZH F. Preparation of specific refractive index material and optical thin films[J]. Chinese Optics, 2013, 6(6): 900-905. (in Chinese)
    [16]
    LEMKE D, BÖHM A, DE BONIS F, et al. Cryogenic filter- and spectrometer wheels for the Mid Infrared Instrument (MIRI) of the James Webb Space Telescope (JWST)[J]. Proceedings of SPIE, 2006, 6273: 627324. doi: 10.1117/12.671230
    [17]
    INOUE Y, MATSUMURA T, HAZUMI M, et al. Cryogenic infrared filter made of alumina for use at millimeter wavelength[J]. Applied Optics, 2014, 53(9): 1727-1733. doi: 10.1364/AO.53.001727
    [18]
    HOU H G, HUSSAIN S, SHAO H CH, et al. Experimental insights on factors influencing sensitivity of thin film narrow band-pass filters[J]. Journal of Nanoelectronics and Optoelectronics, 2019, 14(11): 1548-1554. doi: 10.1166/jno.2019.2663
    [19]
    白胜元, 顾培夫, 刘旭, 等. 薄膜滤光片的光学稳定性研究[J]. 光子学报,2001,30(5):576-580.

    BAI SH Y, GU P F, LIU X, et al. Optical stability of thin film filters[J]. Acta Photonica Sinica, 2001, 30(5): 576-580. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article views(1729) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return