Citation: | LIU Ye, LIU Yu, XIAO Hui-dong, LI Hong-ling, QU Da-peng, ZHENG Quan. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. doi: 10.37188/CO.2020-0249 |
[1] |
LI F Q, YABLON J, VELTEN A, et al. High-depth-resolution range imaging with multiple-wavelength superheterodyne interferometry using 1550-nm lasers[J]. Applied Optics, 2017, 56(31): H51-H56. doi: 10.1364/AO.56.000H51
|
[2] |
ELIA A, LUGARÀ P M, DI FRANCO C, et al. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources[J]. Sensors, 2009, 9(12): 9616-9628. doi: 10.3390/s91209616
|
[3] |
LANG X K, JIA P, CHEN Y Y, et al. Advances in narrow linewidth diode lasers[J]. Science China Information Sciences, 2019, 62(6): 61401. doi: 10.1007/s11432-019-9870-0
|
[4] |
PABC EUF D, HASTIE J E. Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications[J]. Applied Optics, 2016, 55(19): 4980-4984. doi: 10.1364/AO.55.004980
|
[5] |
YANG X X, YIN Y N, LI X J, et al. External cavity diode laser as a stable-frequency light source for application in laser cooling of molecules[J]. Chinese Optics Letters, 2016, 14(7): 071403. doi: 10.3788/COL201614.071403
|
[6] |
高颖, 戴连奎, 朱华东, 等. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学,2019,47(1):67-76.
GAO Y, DAI L K, ZHU H D, et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 67-76. (in Chinese)
|
[7] |
刘洋, 张天舒, 赵雪松, 等. 高精度测温拉曼激光雷达光谱仪的光学设计[J]. 光学 精密工程,2018,26(8):1904-1909. doi: 10.3788/OPE.20182608.1904
LIU Y, ZHANG T SH, ZHAO X S, et al. Optical design and analysis of laser radar spectrometer with high accuracy[J]. Optics and Precision Engineering, 2018, 26(8): 1904-1909. (in Chinese) doi: 10.3788/OPE.20182608.1904
|
[8] |
刘庆省, 郭金家, 杨德旺, 等. 小型高灵敏度水下拉曼光谱系统[J]. 光学 精密工程,2018,26(1):8-13. doi: 10.3788/OPE.20182601.0008
LIU Q X, GUO J J, YANG D W, et al. A compact underwater Raman spectroscopy system with high sensitivity[J]. Optics and Precision Engineering, 2018, 26(1): 8-13. (in Chinese) doi: 10.3788/OPE.20182601.0008
|
[9] |
WANG W B, MAJOR A, PALIWAL J. Grating-stabilized external cavity diode lasers for Raman spectroscopy—a review[J]. Applied Spectroscopy Reviews, 2012, 47(2): 116-143. doi: 10.1080/05704928.2011.631649
|
[10] |
刘燕德, 靳昙昙, 王海阳. 基于拉曼光谱的三组分食用调和油快速定量检测[J]. 光学 精密工程,2015,23(9):2490-2496. doi: 10.3788/OPE.20152309.2490
LIU Y D, JIN T T, WANG H Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J]. Optics and Precision Engineering, 2015, 23(9): 2490-2496. (in Chinese) doi: 10.3788/OPE.20152309.2490
|
[11] |
ZRIMSEK A B, CHIANG N, MATTEI M, et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(11): 7583-7613. doi: 10.1021/acs.chemrev.6b00552
|
[12] |
PITTS W M. Carbon monoxide concentration measurements in fuel cell environments using Tunable Diode Laser Absorption Spectroscopy (TDLAS): an assessment[R]. 2017.
|
[13] |
CHOI D W, JEON M G, CHO G R, et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)[J]. Journal of Thermal Science, 2016, 25(1): 84-89. doi: 10.1007/s11630-016-0837-z
|
[14] |
贾良权, 祁亨年, 胡文军, 等. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程,2019,27(6):1397-1404. doi: 10.3788/OPE.20192706.1397
JIA L Q, QI H N, HU W J, et al. CO2 concentration detection system for seed respiration[J]. Optics and Precision Engineering, 2019, 27(6): 1397-1404. (in Chinese) doi: 10.3788/OPE.20192706.1397
|
[15] |
李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学 精密工程,2018,26(8):1855-1861. doi: 10.3788/OPE.20182608.1855
LI CH G, DONG L, WANG Y D, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J]. Optics and Precision Engineering, 2018, 26(8): 1855-1861. (in Chinese) doi: 10.3788/OPE.20182608.1855
|
[16] |
龙睿, 王海龙, 成若海, 等. 外腔反馈对量子点激光器输出特性的影响[J]. 发光学报,2013,34(4):474-479. doi: 10.3788/fgxb20133404.0474
LONG R, WANG H L, CHENG R H, et al. Influence of external cavity feedback on the output characteristics of quantum-dot lasers[J]. Chinese Journal of Luminescence, 2013, 34(4): 474-479. (in Chinese) doi: 10.3788/fgxb20133404.0474
|
[17] |
刘荣战, 薄报学, 么娜, 等. 体布拉格光栅外腔红光半导体激光器实验研究[J]. 发光学报,2019,40(11):1401-1408. doi: 10.3788/fgxb20194011.1401
LIU R ZH, BO B X, YAO N, et al. Experimental research on volume-Bragg-grating external cavity red-light semiconductor lasers[J]. Chinese Journal of Luminescence, 2019, 40(11): 1401-1408. (in Chinese) doi: 10.3788/fgxb20194011.1401
|
[18] |
GUO H P, OLAMAX G T. Analysis of no mode-hop tuning of mirror-grating external-cavity diode laser[J]. Optics Communications, 2018, 421: 90-93. doi: 10.1016/j.optcom.2018.03.074
|
[19] |
田景玉, 张俊, 彭航宇, 等. 用于碱金属蒸汽激光器泵浦的窄线宽780 nm半导体激光源[J]. 发光学报,2019,40(9):1123-1129. doi: 10.3788/fgxb20194009.1123
TIAN J Y, ZHANG J, PENG H Y, et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence, 2019, 40(9): 1123-1129. (in Chinese) doi: 10.3788/fgxb20194009.1123
|
[20] |
DING D, LV W L, LV X Q, et al. Influence of grating parameters on the performance of a high-power blue external-cavity semiconductor laser[J]. Applied Optics, 2018, 57(7): 1589-1593. doi: 10.1364/AO.57.001589
|
[21] |
郭海平, 万辰皓, 许成文, 等. 外腔半导体激光器动态模稳定性的研究[J]. 激光技术,2016,40(5):706-710. doi: 10.7510/jgjs.issn.1001-3806.2016.05.018
GUO H P, WAN CH H, XU CH W, et al. Study on dynamic mode stability of external cavity diode lasers[J]. Laser Technology, 2016, 40(5): 706-710. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2016.05.018
|
[22] |
HONG W X. Design and characterization of a littrow configuration external cavity diode laser[EB/OL]. http://web.mit.edu/RSI/compendium/edit2004/Final/hong-wenxian-caltech-both.pdf.
|
[23] |
金杰, 郭曙光, 吕福云, 等. 外腔半导体激光器的实验研究[J]. 南开大学学报(自然科学),2002,35(4):56-59.
JIN J, GUO SH G, LU F Y, et al. Study of external cavity semiconductor laser[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2002, 35(4): 56-59. (in Chinese)
|
[24] |
李斌, 涂嫔, 徐勇跃, 等. 405nm波段光栅外腔窄线宽蓝紫光半导体激光器[J]. 激光与光电子学进展,2015,52(3):031404.
LI B, TU P, XU Y Y, et al. Narrow linewidth diode laser with grating external cavity in 405 nm band[J]. Laser &Optoelectronics Progress, 2015, 52(3): 031404. (in Chinese)
|
[25] |
陈少伟, 吕雪芹, 张江勇, 等. 蓝紫光宽带可调谐光栅外腔半导体激光器[J]. 激光与光电子学进展,2013,50(11):111405.
CHEN SH W, LÜ X Q, ZHANG J Y, et al. Blue-violet broadly tunable grating-coupled external cavity semiconductor laser[J]. Laser &Optoelectronics Progress, 2013, 50(11): 111405. (in Chinese)
|
[26] |
荣春朝, 严进一, 龚谦. Littman结构的平移透镜外腔半导体激光器[J]. 激光杂志,2017,38(6):1-3.
RONG CH CH, YAN J Y, GONG Q. Shift lens external cavity semiconductor lasers of Littman configuration[J]. Laser Journal, 2017, 38(6): 1-3. (in Chinese)
|
[27] |
周长帅, 王海龙, 龚谦, 等. 基于光栅相移效应的Littrow激光器的无跳模调谐[J]. 通信技术,2018,51(5):1045-1049. doi: 10.3969/j.issn.1002-0802.2018.05.010
ZHOU CH SH, WANG H L, GONG Q, et al. Mode-hop-free tuning of Littrow lasers based on grating phase-shift effect[J]. Communications Technology, 2018, 51(5): 1045-1049. (in Chinese) doi: 10.3969/j.issn.1002-0802.2018.05.010
|