Citation: | HU Si-qi, TIAN Rui-juan, GAN Xue-tao. Two-dimensional material photodetector for hybrid silicon photonics[J]. Chinese Optics, 2021, 14(5): 1039-1055. doi: 10.37188/CO.2021-0003 |
[1] |
URINO Y, NAKAMURA T, ARAKAWA Y. Silicon optical interposers for high-density optical interconnects[M]. PAVESI L, LOCKWOOD D J. Silicon Photonics III: Systems and Applications. Berlin, Heidelberg: Springer, 2016: 1-39.
|
[2] |
BERGMAN K, SHALF J, HAUSKEN T. Optical interconnects and extreme computing[J]. Optics and Photonics News, 2016, 27(4): 32-39. doi: 10.1364/OPN.27.4.000032
|
[3] |
HO R, MAI K W, HOROWITZ M A. The future of wires[J]. Proceedings of the IEEE, 2001, 89(4): 490-504. doi: 10.1109/5.920580
|
[4] |
FEY D. Architectures and technologies for an optoelectronic VLSI[J]. Optik, 2001, 112(7): 274-282. doi: 10.1078/0030-4026-00057
|
[5] |
郝然. 对硅基光电子技术发展的思考[J]. 中兴通讯技术,2017,23(5):52-55.
HAO R. Development of the silicon photonic technology[J]. ZTE Technology Journal, 2017, 23(5): 52-55. (in Chinese)
|
[6] |
LEE K K, LIM D R, LUAN H C, et al. Effect of Size and Roughness on Light Transmission in a Si/SiO2 waveguide: experiments and model[J]. Applied Physics Letters, 2000, 77(11): 1617-1619. doi: 10.1063/1.1308532
|
[7] |
LEE B G, CHEN X G, BIBERMAN A, et al. Ultrahigh-bandwidth silicon photonic nanowire waveguides for on-chip networks[J]. IEEE Photonics Technology Letters, 2008, 20(6): 398-400. doi: 10.1109/LPT.2008.916912
|
[8] |
OSGOOD JR R M, PANOIU N C, DADAP J I, et al. Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires[J]. Advances in Optics and Photonics, 2009, 1(1): 162-235. doi: 10.1364/AOP.1.000162
|
[9] |
ORCUTT J S, KHILO A, HOLZWARTH C W, et al. Nanophotonic Integration in State-of-the-Art CMOS Foundries[J]. Optics Express, 2011, 19(3): 2335-2346. doi: 10.1364/OE.19.002335
|
[10] |
YOU J, LAVDAS S, PANOIU N C. Theoretical comparative analysis of BER in multi-channel systems with strip and photonic crystal silicon waveguides[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 4400810.
|
[11] |
YOUNGBLOOD N, LI M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications[J]. Nanophotonics, 2016, 6(6): 1205-1218. doi: 10.1515/nanoph-2016-0155
|
[12] |
BOLKHOVITYANOV Y B, PCHELYAKOV O P. GaAs epitaxy on Si substrates: modern status of research and engineering[J]. Physics-Uspekhi, 2008, 51(5): 437-456. doi: 10.1070/PU2008v051n05ABEH006529
|
[13] |
MICHEL J, LIU J F, KIMERLING L C. High-performance Ge-on-Si photodetectors[J]. Nature Photonics, 2010, 4(8): 527-534. doi: 10.1038/nphoton.2010.157
|
[14] |
AKINWANDE D, HUYGHEBAERT C, WANG C H, et al. Graphene and two-dimensional materials for silicon technology[J]. Nature, 2019, 573(7775): 507-518. doi: 10.1038/s41586-019-1573-9
|
[15] |
LIU M, YIN X B, ULIN-AVILA E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67. doi: 10.1038/nature10067
|
[16] |
GAO A Y, LAI J W, WANG Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures[J]. Nature Nanotechnology, 2019, 14(3): 217-222. doi: 10.1038/s41565-018-0348-z
|
[17] |
LONG M SH, WANG P, FANG H H, et al. Progress, challenges, and opportunities for 2D material based photodetectors[J]. Advanced Functional Materials, 2019, 29(19): 1803807. doi: 10.1002/adfm.201803807
|
[18] |
肖建花, 蒋亚东, 王洋, 等. 二极管型近红外聚合物光电探测器研究进展[J]. 红外技术,2020,42(10):917-926. doi: 10.3724/SP.J.7103116028
XIAO J H, JIANG Y D, WANG Y, et al. Review of near-infrared polymer photodiodes[J]. Infrared Technology, 2020, 42(10): 917-926. (in Chinese) doi: 10.3724/SP.J.7103116028
|
[19] |
朱晓秀, 葛咏, 李建军, 等. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学,2020,13(1):62-74. doi: 10.3788/co.20201301.0062
ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese) doi: 10.3788/co.20201301.0062
|
[20] |
FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 2014, 9(10): 768-779. doi: 10.1038/nnano.2014.207
|
[21] |
ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. doi: 10.1021/cr900070d
|
[22] |
MERIC I, HAN M Y, YOUNG A F, et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors[J]. Nature Nanotechnology, 2008, 3(11): 654-659. doi: 10.1038/nnano.2008.268
|
[23] |
REN L, ZHANG Q, YAO J, et al. Terahertz and infrared spectroscopy of gated large-area graphene[J]. Nano Letters, 2012, 12(7): 3711-3715. doi: 10.1021/nl301496r
|
[24] |
BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9-10): 351-355. doi: 10.1016/j.ssc.2008.02.024
|
[25] |
BALANDIN A A, GHOSH S, BAO W ZH, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. doi: 10.1021/nl0731872
|
[26] |
JIANG T, YIN K, WANG C, et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: review and prospect[J]. Photonics Research, 2020, 8(1): 78-90. doi: 10.1364/PRJ.8.000078
|
[27] |
DENG X H, LIU J T, YUAN J R, et al. Tunable THz absorption in graphene-based heterostructures[J]. Optics Express, 2014, 22(24): 30177-30183. doi: 10.1364/OE.22.030177
|
[28] |
FALKOVSKY L A. Optical properties of graphene[J]. Journal of Physics:Conference Series, 2008, 129: 012004. doi: 10.1088/1742-6596/129/1/012004
|
[29] |
ROMAGNOLI M, SORIANELLO V, MIDRIO M, et al. Graphene-based integrated photonics for next-generation datacom and telecom[J]. Nature Reviews Materials, 2018, 3(10): 392-414. doi: 10.1038/s41578-018-0040-9
|
[30] |
LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. doi: 10.1038/nnano.2014.35
|
[31] |
LIU X L, RYDER C R, WELLS S A, et al. Resolving the in-plane anisotropic properties of black phosphorus[J]. Small Methods, 2017, 1(6): 1700143. doi: 10.1002/smtd.201700143
|
[32] |
WANG X M, LAN SH F. Optical properties of black phosphorus[J]. Advances in Optics and Photonics, 2016, 8(4): 618-655. doi: 10.1364/AOP.8.000618
|
[33] |
DAS S, ZHANG W, DEMARTEAU M, et al. Tunable transport gap in phosphorene[J]. Nano Letters, 2014, 14(10): 5733-5739. doi: 10.1021/nl5025535
|
[34] |
ZHENG J L, YANG ZH H, SI C, et al. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability[J]. ACS Photonics, 2017, 4(6): 1466-1476. doi: 10.1021/acsphotonics.7b00231
|
[35] |
RYDER C R, WOOD J D, WELLS S A, et al. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus[J]. ACS Nano, 2016, 10(4): 3900-3917. doi: 10.1021/acsnano.6b01091
|
[36] |
DENG B CH, TRAN V, XIE Y J, et al. Efficient electrical control of thin-film black phosphorus bandgap[J]. Nature Communications, 2017, 8(1): 14474. doi: 10.1038/ncomms14474
|
[37] |
YI Y, SUN ZH B, LI J, et al. Optical and optoelectronic properties of black phosphorus and recent photonic and optoelectronic applications[J]. Small Methods, 2019, 3(10): 1900165. doi: 10.1002/smtd.201900165
|
[38] |
WANG K P, SZYDŁOWSKA B M, WANG G ZH, et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared[J]. ACS Nano, 2016, 10(7): 6923-6932. doi: 10.1021/acsnano.6b02770
|
[39] |
DENG B CH, FRISENDA R, LI CH, et al. Progress on black phosphorus photonics[J]. Advanced Optical Materials, 2018, 6(19): 1800365. doi: 10.1002/adom.201800365
|
[40] |
CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001. doi: 10.1088/2053-1583/1/2/025001
|
[41] |
CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. doi: 10.1038/nchem.1589
|
[42] |
CHERNIKOV A, BERKELBACH T C, HILL H M, et al. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Physical Review Letters, 2014, 113(7): 076802. doi: 10.1103/PhysRevLett.113.076802
|
[43] |
SCHNEIDER C, GLAZOV M M, KORN T, et al. Two-dimensional semiconductors in the regime of strong light-matter coupling[J]. Nature Communications, 2018, 9(1): 2695. doi: 10.1038/s41467-018-04866-6
|
[44] |
RAHMAN I A, PURQON A. First principles study of molybdenum disulfide electronic structure[J]. Journal of Physics:Conference Series, 2017, 877(1): 012026.
|
[45] |
CONG CH X, SHANG J Z, WANG Y L, et al. Optical properties of 2D semiconductor WS2[J]. Advanced Optical Materials, 2018, 6(1): 1700767. doi: 10.1002/adom.201700767
|
[46] |
DELPHINE S M, JAYACHANDRAN M, SANJEEVIRAJA C. Review of material properties of (Mo/W)Se2-layered compound semiconductors useful for photoelectrochemical solar cells[J]. Crystallography Reviews, 2011, 17(4): 281-301. doi: 10.1080/0889311X.2011.611130
|
[47] |
MITIOGLU A A, PLOCHOCKA P, GRANADOS DEL AGUILA Á, et al. Optical investigation of monolayer and bulk tungsten diselenide (WSe2) in high magnetic fields[J]. Nano Letters, 2015, 15(7): 4387-4392. doi: 10.1021/acs.nanolett.5b00626
|
[48] |
MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805
|
[49] |
TAN CH L, ZHANG H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews, 2015, 44(9): 2713-2731. doi: 10.1039/C4CS00182F
|
[50] |
YE Z L, CAO T, O’BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. doi: 10.1038/nature13734
|
[51] |
DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. doi: 10.1038/nnano.2010.172
|
[52] |
VUONG T Q P, CASSABOIS G, VALVIN P, et al. Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy[J]. 2D Materials, 2017, 4(2): 021023. doi: 10.1088/2053-1583/aa604a
|
[53] |
CAI Q R, SCULLION D, GAN W, et al. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion[J]. Science Advances, 2019, 5(6): eaav0129. doi: 10.1126/sciadv.aav0129
|
[54] |
VELICKÝ M, TOTH P S. From two-dimensional materials to their heterostructures: an electrochemist’s perspective[J]. Applied Materials Today, 2017, 8: 68-103. doi: 10.1016/j.apmt.2017.05.003
|
[55] |
GEIM A K, GRIGORIEVA I V. Van der waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. doi: 10.1038/nature12385
|
[56] |
LIU Y D, FANG H L, RASMITA A, et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures[J]. Science Advances, 2019, 5(4): eaav4506. doi: 10.1126/sciadv.aav4506
|
[57] |
LIU Y P, ZHANG S Y, HE J, et al. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials[J]. Nano-Micro Letters, 2019, 11(1): 13. doi: 10.1007/s40820-019-0245-5
|
[58] |
JIANG X T, KUKLIN A V, BAEV A, et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications[J]. Physics Reports, 2020, 848: 1-58. doi: 10.1016/j.physrep.2019.12.006
|
[59] |
BROTONS-GISBERT M, ANDRES-PENARES D, SUH J, et al. Nanotexturing to enhance photoluminescent response of atomically thin indium selenide with highly tunable band gap[J]. Nano Letters, 2016, 16(5): 3221-3229. doi: 10.1021/acs.nanolett.6b00689
|
[60] |
BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12(3): 223-227. doi: 10.1038/nnano.2016.242
|
[61] |
LI ZH J, QIAO H, GUO ZH N, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered inse nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237. doi: 10.1002/adfm.201705237
|
[62] |
JIANG X T, ZHAO X M, BAO W L, et al. Graphdiyne nanosheets for multicolor random lasers[J]. ACS Applied Nano Materials, 2020, 3(6): 4990-4996. doi: 10.1021/acsanm.0c00859
|
[63] |
LI P F, CHEN Y, YANG T SH, et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers[J]. ACS Applied Materials &Interfaces, 2017, 9(14): 12759-12765.
|
[64] |
DE QUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells[J]. Science, 2015, 348(6235): 683-686. doi: 10.1126/science.aaa5333
|
[65] |
TIAN Y X, PETER M, UNGER E, et al. Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold[J]. Physical Chemistry Chemical Physics, 2015, 17(38): 24978-24987. doi: 10.1039/C5CP04410C
|
[66] |
KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection[J]. Nature Nanotechnology, 2010, 5(6): 391-400. doi: 10.1038/nnano.2010.78
|
[67] |
KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nature Nanotechnology, 2012, 7(6): 363-368. doi: 10.1038/nnano.2012.60
|
[68] |
FANG H H, HU W D. Photogating in low dimensional photodetectors[J]. Advanced Science, 2017, 4(12): 1700323. doi: 10.1002/advs.201700323
|
[69] |
SZE S M, NG K K. Physics of Semiconductor Devices[M]. 3rd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006.
|
[70] |
XU X D, GABOR N M, ALDEN J S, et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 2010, 10(2): 562-566. doi: 10.1021/nl903451y
|
[71] |
YUAN H, LIU X, AFSHINMANESH F, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction[J]. Nature Nanotechnology, 2015, 10(8): 707-713.
|
[72] |
BOYD R W, HILBORN R C. Radiometry and the detection of optical radiation[J]. American Journal of Physics, 1984, 52(7): 668-669. doi: 10.1119/1.13578
|
[73] |
FREITAG M, LOW T, XIA F N, et al. Photoconductivity of biased graphene[J]. Nature Photonics, 2013, 7(1): 53-59. doi: 10.1038/nphoton.2012.314
|
[74] |
LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434. doi: 10.1103/PhysRevB.90.075434
|
[75] |
XIA F N, MUELLER T, LIN Y M, et al. Ultrafast graphene photodetector[J]. Nature Nanotechnology, 2009, 4(12): 839-843. doi: 10.1038/nnano.2009.292
|
[76] |
GAN X T, SHIUE R J, GAO Y D, et al. Chip-integrated ultrafast graphene photodetector with high responsivity[J]. Nature Photonics, 2013, 7(11): 883-887. doi: 10.1038/nphoton.2013.253
|
[77] |
WANG X M, CHENG ZH ZH, XU K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11): 888-891. doi: 10.1038/nphoton.2013.241
|
[78] |
POSPISCHIL A, HUMER M, FURCHI M M, et al. CMOS-compatible graphene photodetector covering all optical communication bands[J]. Nature Photonics, 2013, 7(11): 892-896. doi: 10.1038/nphoton.2013.240
|
[79] |
SHIUE R J, GAO Y D, WANG Y F, et al. High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit[J]. Nano Letters, 2015, 15(11): 7288-7293. doi: 10.1021/acs.nanolett.5b02368
|
[80] |
SCHULER S, SCHALL D, NEUMAIER D, et al. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 2016, 16(11): 7107-7112. doi: 10.1021/acs.nanolett.6b03374
|
[81] |
SCHULER S, SCHALL D, NEUMAIER D, et al. Graphene photodetector integrated on a photonic crystal defect waveguide[J]. ACS Photonics, 2018, 5(12): 4758-4763. doi: 10.1021/acsphotonics.8b01128
|
[82] |
LIU J F, MICHEL J, GIZIEWICZ W, et al. High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform[J]. Applied Physics Letters, 2005, 87(10): 103501. doi: 10.1063/1.2037200
|
[83] |
MA P, SALAMIN Y, BAEUERLE B, et al. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size[J]. ACS Photonics, 2019, 6(1): 154-161. doi: 10.1021/acsphotonics.8b01234
|
[84] |
GUO J SH, LI J, LIU CH Y, et al. High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm[J]. Light:Science &Applications, 2020, 9(1): 29.
|
[85] |
BUSCEMA M, GROENENDIJK D J, BLANTER S I, et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors[J]. Nano Letters, 2014, 14(6): 3347-3352. doi: 10.1021/nl5008085
|
[86] |
YOUNGBLOOD N, CHEN CH, KOESTER S J, et al. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current[J]. Nature Photonics, 2015, 9(4)-252.
|
[87] |
CHEN CH, YOUNGBLOOD N, PENG R M, et al. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics[J]. Nano Letters, 2017, 17(2): 985-991. doi: 10.1021/acs.nanolett.6b04332
|
[88] |
YIN Y L, CAO R, GUO J SH, et al. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 μm[J]. Laser &Photonics Reviews, 2019, 13(6): 1900032.
|
[89] |
HUANG L, DONG B W, GUO X, et al. Waveguide-integrated black phosphorus photodetector for mid-infrared applications[J]. ACS Nano, 2019, 13(1): 913-921. doi: 10.1021/acsnano.8b08758
|
[90] |
THAKAR K, LODHA S. Optoelectronic and photonic devices based on transition metal dichalcogenides[J]. Materials Research Express, 2020, 7(1): 014002. doi: 10.1088/2053-1591/ab5c9c
|
[91] |
YANG J, LÜ T Y, MYINT Y W, et al. Robust excitons and trions in monolayer MoTe2[J]. ACS Nano, 2015, 9(6): 6603-6609. doi: 10.1021/acsnano.5b02665
|
[92] |
BIE Y Q, GROSSO G, HEUCK M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits[J]. Nature Nanotechnology, 2017, 12(12): 1124-1129. doi: 10.1038/nnano.2017.209
|
[93] |
MA P, FLÖRY N, SALAMIN Y, et al. Fast MoTe2 waveguide photodetector with high sensitivity at telecommunication wavelengths[J]. ACS Photonics, 2018, 5(5): 1846-1852. doi: 10.1021/acsphotonics.8b00068
|
[94] |
FLÖRY N, MA P, SALAMIN Y, et al. Waveguide-Integrated van der waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J]. Nature Nanotechnology, 2020, 15(2): 118-124. doi: 10.1038/s41565-019-0602-z
|
[95] |
MAITI R, PATIL C, SAADI M A S R, et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits[J]. Nature Photonics, 2020, 14(9): 578-584. doi: 10.1038/s41566-020-0647-4
|
[96] |
GAO Y, ZHOU G D, TSANG H K, et al. High-speed van der waals heterostructure tunneling photodiodes integrated on silicon nitride waveguides[J]. Optica, 2019, 6(4): 514-517. doi: 10.1364/OPTICA.6.000514
|