Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
WANG Shuo, HU Bin, LIU Juan. Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method[J]. Chinese Optics, 2021, 14(5): 1288-1304. doi: 10.37188/CO.2021-0004
Citation: WANG Shuo, HU Bin, LIU Juan. Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method[J]. Chinese Optics, 2021, 14(5): 1288-1304. doi: 10.37188/CO.2021-0004

Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method

doi: 10.37188/CO.2021-0004
Funds:  Supported by National Natural Science Foundation of China (No. 61875010)
More Information
  • Author Bio:

    Wang Shuo (1994—), male, born in Binzhou City, Shandong Province. He is a master candidate. He has been studying optical engineering at School of Optoelectronics, Beijing Institute of Technology since 2018. His research interest is full-vector diffraction algorithm. E-mail: 2623967359@qq.com

    Hu Bin (1981—), male, born in Cangzhou, Hebei Province. He is an associate professor and a doctoral supervisor. His main research interests include SPP optics, metamaterials, metasurface devices, graphene-based photonic devices, micro-nano optics, and full-vector diffraction algorithm. E-mail: hubin@bit.edu.cn

  • Corresponding author: hubin@bit.edu.cn
  • Received Date: 13 Jan 2021
  • Rev Recd Date: 02 Feb 2021
  • Available Online: 10 May 2021
  • Publish Date: 18 Sep 2021
  • Compared with the commonly used simulation algorithms such as Finite Element Method (FEM) and Finite-Difference Time-Domain (FDTD) method, the Boundary Element Method (BEM) has the advantages of high accuracy, small memory consumption, and ability to deal with complex structures. In this paper, the basic principle of three-dimensional BEM is given, the corresponding program based on C++ language is written, and the Surface Plasmon Resonance (SPR) characteristics of a graphene nano-disk structure are studied. The Scattering Cross-Section (SCS) spectral lines of a graphene nano-disk under different chemical potentials, as well as the distributions of electromagnetic fields at the resonance wavelengths are calculated. The electromagnetic response of the graphene nano-disk in the infrared band is analyzed. In addition, considering the common corrugations of graphene materials caused by defects during processing, we study the influence of the geometric parameters of a convex structure in the center of the graphene nano-disk on the resonance intensity, wavelength and field distributions. A spring oscillator model of charge movement is used to explain the simulation results.

     

  • loading
  • [1]
    WANG B, WANG G P. Simulations of nanoscale interferometer and array focusing by metal heterowaveguides[J]. Optics Express, 2005, 13(26): 10558-10563. doi: 10.1364/OPEX.13.010558
    [2]
    LI B, HU B, YANG Y L, et al. Demagnification imaging improved by mask in a hyperlens photolithography system[J]. Plasmonics, 2007, 12(3): 735-741.
    [3]
    EL-SAYED I H, HUANG X H, EL-SAYED M A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer[J]. Nano Letters, 2005, 5(5): 829-834. doi: 10.1021/nl050074e
    [4]
    ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3): 205-213. doi: 10.1038/nmat2629
    [5]
    ZIJLSTRA P, CHON J W M, GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053
    [6]
    CHEN ZH X, WANG W B, LIANG CH, et al. Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 2021, 14(1): 1-17. (in Chinese) doi: 10.37188/CO.2020-0060
    [7]
    CHRISTENSEN J, MANJAVACAS A, THONGRATTANASIRI S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440. doi: 10.1021/nn2037626
    [8]
    LIU P H, ZHANG X ZH, MA Z H, et al. Surface Plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 2013, 21(26): 32432-32440. doi: 10.1364/OE.21.032432
    [9]
    HE X Y, LIU F, LIN F T, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475. doi: 10.1364/OL.415187
    [10]
    WU L, CHU H S, KOH W S, et al. Highly sensitive graphene biosensors based on surface Plasmon resonance[J]. Optics Express, 2010, 18(14): 14395-14400. doi: 10.1364/OE.18.014395
    [11]
    PENG J L, ZHU ZH H, ZHANG J F, et al. Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks[J]. Applied Physics Express, 2016, 9(5): 055102. doi: 10.7567/APEX.9.055102
    [12]
    HE X Y. Tunable terahertz graphene metamaterials[J]. Carbon, 2015, 82: 229-237. doi: 10.1016/j.carbon.2014.10.066
    [13]
    PENG J, HE X Y, SHI CH Y Y, et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2020, 124: 114309. doi: 10.1016/j.physe.2020.114309
    [14]
    TIAN H J, LIU Q L, YUE H, et al. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed[J]. Chinese Optics, 2021, 14(1): 206-212. (in Chinese) doi: 10.37188/CO.2020-0153
    [15]
    CONG C X, YU T, NI Z H, et al. Fabrication of graphene nanodisk arrays using nanosphere lithography[J]. J. Phys. Chem. C, 2009, 113(16): 6529-6532. doi: 10.1021/jp900011s
    [16]
    THONGRATTANASIRI S, KOPPENS F H L, DE ABAJO F J G. Complete optical absorption in periodically patterned graphene[J]. Physical Review Letters, 2012, 108: 047401. doi: 10.1103/PhysRevLett.108.047401
    [17]
    FANG ZH Y, WANG Y M, SCHLATHER A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14(1): 299-304. doi: 10.1021/nl404042h
    [18]
    YAN H G, XIA F N, LI ZH Q, et al. Plasmonics of coupled graphene micro-structures[J]. New Journal of Physics, 2012, 14: 125001. doi: 10.1088/1367-2630/14/12/125001
    [19]
    ZUNDEL L, MANJAVACAS A. Spatially resolved optical sensing using graphene nanodisk arrays[J]. ACS Photonics, 2017, 4(7): 1831-1838.
    [20]
    KARANIKOLAS V D, MAROCICO C A, BRADLEY A L. Tunable and long-range energy transfer efficiency through a graphene nanodisk[J]. Physical Review B, 2016, 93: 035426. doi: 10.1103/PhysRevB.93.035426
    [21]
    DENG SH K, BERRY V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications[J]. Materials Today, 2016, 19(4): 197-212. doi: 10.1016/j.mattod.2015.10.002
    [22]
    DU ZH Y. Study of enhanced localized surface plasmonic resonance of graphene nano-ribbons[D]. Beijing: Beijing Institute of Technology, 2019. (in Chinese)
    [23]
    WANG W H, LI B H, STASSEN E, et al. Localized surface plasmons in vibrating graphene nanodisks[J]. Nanoscale, 2016, 8(6): 3809-3815. doi: 10.1039/C5NR08812G
    [24]
    SLIPCHENKO T M, NESTEROV M L, HILLENBRAND R, et al. Graphene plasmon reflection by corrugations[J]. ACS Photonics, 2017, 4(12): 3081-3088. doi: 10.1021/acsphotonics.7b00656
    [25]
    XIA SH X, ZHAI X, WANG L L, et al. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers[J]. Optics Express, 2016, 24(16): 17886-17899. doi: 10.1364/OE.24.017886
    [26]
    WANG L, LIU X, ZANG J F. Mechanically tunable terahertz graphene plasmonics using soft metasurface[J]. 2D Materials, 2016, 3(4): 041007. doi: 10.1088/2053-1583/3/4/041007
    [27]
    LIU P. Optical coupling properties of metallic nanoparticles studied by 3D boundary element method[D]. Beijing: Beijing Institute of Technology, 2013. (in Chinese)
    [28]
    WANG CH Q. Computational Advanced Electromagnetics[M]. Beijing: Peking University Press, 2005. (in Chinese)
    [29]
    CHANG F K. The investigation of nano-optical elements by 3D boundary element method[D]. Beijing: Beijing Jiaotong University, 2008. (in Chinese)
    [30]
    LIU P, LIU J, LIU J, et al. Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave[J]. Optics Communications, 2011, 284(4): 1076-1081. doi: 10.1016/j.optcom.2010.10.033
    [31]
    LIU P H. Investigation on the plasmonics of graphene microstructures[D]. Tianjin: Nankai University, 2014. (in Chinese)
    [32]
    DU ZH Y, HU B, LIU W G, et al. Plasmonic resonance of distorted graphene nano-ribbon analyzed by boundary element method[J]. Optics Express, 2018, 26(20): 25962-25973. doi: 10.1364/OE.26.025962
    [33]
    WANG B, ZHANG X, GARCÍA-VIDAL F J, et al. Strong coupling of surface Plasmon polaritons in monolayer graphene sheet arrays[J]. Physical Review Letters, 2012, 109: 073901. doi: 10.1103/PhysRevLett.109.073901
    [34]
    KATS M A, YU N F, GENEVET P, et al. Effect of radiation damping on the spectral response of plasmonic components[J]. Optics Express, 2011, 19(22): 21748-21753. doi: 10.1364/OE.19.021748
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(1098) PDF downloads(73) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return