Loading [MathJax]/extensions/MathZoom.js
XUE Yi-meng, LIU Bing-cai, PAN Yong-qiang, FANG Xin-meng, TIAN Ai-ling, ZHANG Rui-xuan. Vortex phase-shifting digital holography for micro-optical element surface topography measurment[J]. Chinese Optics, 2024, 17(4): 852-861. doi: 10.37188/CO.2023-0180
Citation: XUE Zhao-kang, GUO Qi, LIU Shan-ren, PAN Xue-peng, CHEN Chao, YU Yong-sen. Fiber bragg grating temperature and pressure sensor for oil and gas well[J]. Chinese Optics, 2021, 14(5): 1224-1230. doi: 10.37188/CO.2021-0008

Fiber bragg grating temperature and pressure sensor for oil and gas well

Funds:  Supported by National Natural Science Foundation of China (No. 91860140, No. 61874119,No. 61905244); Science and Technology Development Project of Jilin Province (No. 20180201014GX)
More Information
  • Corresponding author: yuys@jlu.edu.cn
  • Received Date: 14 Jan 2021
  • Rev Recd Date: 22 Feb 2021
  • Available Online: 15 May 2021
  • Publish Date: 18 Sep 2021
  • Temperature and pressure are very important parameters in oil and gas well exploitation. The downhole environment is harsh so it is difficult for traditional electronic sensors to achieve long-term and stable monitoring of downhole parameters. In this paper, a fiber Bragg grating temperature and pressure sensor based on a carbon-fiber sensitized tube is proposed. The sensor is composed of a hollow tubular structure woven of carbon fibers as a skeleton. The composite carbon fiber tubes are cured by high-temperature resistant epoxy resin as an elastomer, and the high-temperature resistant fiber Bragg grating is embedded on the surface as a sensing element to realize the simultaneous measurement of downhole temperature and pressure. The experimental results show that the sensor can work stably in environments of 0~150 ℃ and 0~80 MPa, and the maximum pressure sensitivity can reach −50.02 pm/MPa. The sensor has a good linear response. By adding a reference grating as a temperature compensation grating, the cross-sensitivity problem in the process of the simultaneous measurement of temperature and pressure is solved, and the accuracy requirements in the process of underground mining are met. This technique provides an experimental basis for the design of high-temperature and high-pressure optical fiber sensors in oil and gas wells.

     

  • [1]
    QIAO X G, SHAO ZH H, BAO W J, et al. Fiber Bragg grating sensors for the oil industry[J]. Sensors, 2017, 17(3): 429. doi: 10.3390/s17030429
    [2]
    ERLANDSEN S, VOLD G, MAKIN G D. World’s first multiple fiber-optic intelligent well: intelligent wells[J]. World Oil, 2003, 224(3): 29-32.
    [3]
    丁润琪, 侯尚林, 雷景丽, 等. 太赫兹正六边形光子晶体光纤的液体传感[J]. 发光学报,2019,40(2):272-276. doi: 10.3788/fgxb20194002.0272

    DING R Q, HOU SH L, LEI J L, et al. Liquid sensing of hexagonal photonic crystal fibers for terahertz wave[J]. Chinese Journal of Luminescence, 2019, 40(2): 272-276. (in Chinese) doi: 10.3788/fgxb20194002.0272
    [4]
    GUO Q, YU Y S, ZHENG ZH M, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 2019, 18: 208-211. doi: 10.1109/TNANO.2018.2888536
    [5]
    陈静, 杨曌, 黄宇豪, 等. 基于荧光猝灭效应的光纤传感器研究进展[J]. 发光学报,2020,41(10):1269-1278. doi: 10.37188/CJL.20200206

    CHEN J, YANG ZH, HUANG Y H, et al. Research progress of optical fiber sensors based on fluorescence quenching effect[J]. Chinese Journal of Luminescence, 2020, 41(10): 1269-1278. (in Chinese) doi: 10.37188/CJL.20200206
    [6]
    张正义. 基于光纤光栅的一体式靶式流量传感技术[J]. 发光学报,2020,41(2):217-223.

    ZHANG ZH Y. One-piece flow target type based on fiber Bragg grating sensing technology[J]. Chinese Journal of Luminescence, 2020, 41(2): 217-223. (in Chinese)
    [7]
    吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121

    WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese) doi: 10.37188/CO.2020-0121
    [8]
    饶春芳, 吴锴, 胡友德, 等. 光纤布拉格光栅在医用蒸汽灭菌器温度监测的应用[J]. 光学 精密工程,2020,28(9):1930-1938. doi: 10.37188/OPE.20202809.1930

    RAO CH F, WU K, HU Y D, et al. Application of fiber Bragg grating in temperature monitoring of medical steam sterilizer[J]. Optics and Precision Engineering, 2020, 28(9): 1930-1938. (in Chinese) doi: 10.37188/OPE.20202809.1930
    [9]
    ZHOU X L, YU Q X, PENG W. Fiber-optic Fabry-Perot pressure sensor for down-hole application[J]. Optics and Lasers in Engineering, 2019, 121: 289-299. doi: 10.1016/j.optlaseng.2019.04.028
    [10]
    刘明尧, 杜常饶, 武育斌. 环氧树脂封装的EFPI-FBG复合压力温度传感器[J]. 光学 精密工程,2019,27(10):2080-2088. doi: 10.3788/OPE.20192710.2080

    LIU M Y, DU CH R, WU Y B. EFPI-FBG composite pressure and temperature sensor embedded in epoxy resin[J]. Optics and Precision Engineering, 2019, 27(10): 2080-2088. (in Chinese) doi: 10.3788/OPE.20192710.2080
    [11]
    QI X G, WANG SH, JIANG J F, et al. Fiber optic Fabry-perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection[J]. Journal of Lightwave Technology, 2019, 37(11): 2719-2725. doi: 10.1109/JLT.2018.2876717
    [12]
    PADIDAR S, AHMADI V, EBNALI-HEIDARI M. Design of high sensitive pressure and temperature sensor using photonic crystal fiber for downhole application[J]. IEEE Photonics Journal, 2012, 4(5): 1590-1599. doi: 10.1109/JPHOT.2012.2212242
    [13]
    SADEGHI J, LATIFI H, SANTOS J L, et al. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application[J]. Applied Physics Letters, 2014, 104(7): 071910. doi: 10.1063/1.4866334
    [14]
    FU H Y, WU CH, TSE M L V, et al. High pressure sensor based on photonic crystal fiber for downhole application[J]. Applied Optics, 2010, 49(14): 2639-2643. doi: 10.1364/AO.49.002639
    [15]
    ZHAO Y, LIAO Y B, LAI SH R. Simultaneous measurement of down-hole high pressure and temperature with a bulk-modulus and FBG sensor[J]. IEEE Photonics Technology Letters, 2002, 14(11): 1584-1586. doi: 10.1109/LPT.2002.803914
    [16]
    RONG Q ZH, QIAO X G. FBG for oil and gas exploration[J]. Journal of Lightwave Technology, 2019, 37(11): 2502-2515. doi: 10.1109/JLT.2018.2866326
    [17]
    王宏亮, 宋娟, 冯德全, 等. 应用于特殊环境的光纤光栅温度压力传感器[J]. 光学 精密工程,2011,19(3):545-551. doi: 10.3788/OPE.20111903.0545

    WANG H L, SONG J, FENG D Q, et al. High temperature-pressure FBG sensor applied to special environments[J]. Optics and Precision Engineering, 2011, 19(3): 545-551. (in Chinese) doi: 10.3788/OPE.20111903.0545
    [18]
    MACHAVARAM V R, BADCOCK R A, FERNANDO G F. Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching[J]. Sensors and Actuators A:Physical, 2007, 138(1): 248-260. doi: 10.1016/j.sna.2007.04.007
    [19]
    ZHANG Y N, YUAN L, LAN X W, et al. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser: erratum[J]. Optics Letters, 2014, 39(1): 17. doi: 10.1364/OL.39.000017
    [20]
    ZHOU P, LIAO C R, LI ZH Y, et al. In-fiber cascaded FPI fabricated by chemical-assisted femtosecond laser micromachining for micro-fluidic sensing applications[J]. Journal of Lightwave Technology, 2019, 37(13): 3214-3221. doi: 10.1109/JLT.2019.2912835
    [21]
    WANG Z, LIU H, MA Z, et al. High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer[J]. Optics Express, 2019, 27(20): 27691-27701. doi: 10.1364/OE.27.027691
    [22]
    LI W CH, YUAN Y G, YANG J, et al. In-fiber integrated high sensitivity temperature sensor based on long Fabry-Perot resonator[J]. Optics Express, 2019, 27(10): 14675-14683. doi: 10.1364/OE.27.014675
    [23]
    ZHANG ZH, HE J, DU B, et al. Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers[J]. Optics Letters, 2018, 43(24): 6009-6012. doi: 10.1364/OL.43.006009
    [24]
    LIU Y G, WANG Y X, YANG D Q, et al. Hollow-core fiber-based all-fiber fpi sensor for simultaneous measurement of air pressure and temperature[J]. IEEE Sensors Journal, 2019, 19(23): 11236-11241. doi: 10.1109/JSEN.2019.2934738
    [25]
    吴晶, 吴晗平, 黄俊斌, 等. 光纤光栅传感信号解调技术研究进展[J]. 中国光学,2014,7(4):519-531.

    WU J, WU H P, HUANG J B, et al. Research progress in signal demodulation technology of fiber Bragg grating sensors[J]. Chinese Optics, 2014, 7(4): 519-531. (in Chinese)
    [26]
    ZHOU C M, PANG Y D, QIAN L, et al. Demodulation of a hydroacoustic sensor array of fiber interferometers based on ultra-weak fiber Bragg grating reflectors using a self-referencing signal[J]. Journal of Lightwave Technology, 2019, 37(11): 2568-2576. doi: 10.1109/JLT.2018.2884512
    [27]
    XU M G, REEKIE L, CHOW Y T, et al. Optical in-fibre grating high pressure sensor[J]. Electronics Letters, 1993, 29(4): 398-399. doi: 10.1049/el:19930267
    [28]
    孙安, 乔学光, 贾振安, 等. 耐高压光纤Bragg光栅压力传感技术研究[J]. 光子学报,2004,33(7):823-825.

    SUN A, QIAO X G, JIA ZH A, et al. The study of fiber Bragg grating pressure sensor with high pressure-resistance[J]. Acta Photonica Sinica, 2004, 33(7): 823-825. (in Chinese)
    [29]
    申人升, 于永森, 张金, 等. 薄壁应变筒式光纤光栅压力传感器的研究[J]. 光电子·激光,2008,19(11):1433-1436. doi: 10.3321/j.issn:1005-0086.2008.11.002

    SHEN R SH, YU Y S, ZHANG J, et al. Investigation of FBG pressure sensor based on thin wall strain tube[J]. Journal of Optoelectronics·Laser, 2008, 19(11): 1433-1436. (in Chinese) doi: 10.3321/j.issn:1005-0086.2008.11.002
    [30]
    FENG P F, SONG G J, LI X R, et al. Effects of different "rigid-flexible" structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites[J]. Journal of Colloid and Interface Science, 2021, 583: 13-23. doi: 10.1016/j.jcis.2020.09.005
    [31]
    GUO F L, HUANG P, LI Y Q, et al. Multiscale modeling of mechanical behaviors of carbon fiber reinforced epoxy composites subjected to hygrothermal aging[J]. Composite Structures, 2021, 256: 113098. doi: 10.1016/j.compstruct.2020.113098
    [32]
    李科杰. 新编传感器技术手册[M]. 北京: 国防工业出版社, 2002.

    LI K J. New Sensor Technical Manual[M]. Beijing: National Defense Industry Press, 2002. (in Chinese)
    [33]
    GARCIA I, ZUBIA J, DURANA G, et al. Optical fiber sensors for aircraft structural health monitoring[J]. Sensors, 2015, 15(7): 15494-15519. doi: 10.3390/s150715494
    [34]
    XIONG L, JIANG G ZH, GUO Y X, et al. Investigation of the temperature compensation of FBGs encapsulated with different methods and subjected to different temperature change rates[J]. Journal of Lightwave Technology, 2019, 37(3): 917-926. doi: 10.1109/JLT.2018.2883817
    [35]
    吕京生, 郭士生, 王昌, 等. 一种新型光纤油井井下压力传感器[J]. 山东科学,2011,24(2):47-50.

    LÜ J SH, GUO SH SH, WANG CH, et al. A new optical fiber pressure sensor for oil well application[J]. Shandong Science, 2011, 24(2): 47-50. (in Chinese)
  • Relative Articles

    [1]WANG Shen, LIU Quan, GUO Cheng-li, YAN Li-song. CGH null compensation testing of high-order coaxial aspherical surfaces[J]. Chinese Optics, 2025, 18(2): 237-244. doi: 10.37188/CO.2024-0152
    [2]WANG Zi-hao, LIU Zhi-kai, FENG Yu-xiang, ZHANG Cheng-long, LV Li-dong. Improvement of signal-to-noise ratio for phase-sensitive optical time-domain reflecting system[J]. Chinese Optics, 2025, 18(2): 287-296. doi: 10.37188/CO.2024-0122
    [3]HUANG Hui-ming, LIU Gui-hua, DENG Lei, SONG Tao, QIN Fu-ping. Multi-line laser 3D reconstruction based on geometric estimation optimization[J]. Chinese Optics, 2025, 18(2): 274-286. doi: 10.37188/CO.2024-0184
    [4]基于FPGA的PDH激光稳频数字化实现[J]. Chinese Optics. doi: 10.37188/CO.2024-0080
    [5]Chao MEI, Ke Cheng, Xiao-wen YI, Cai-ying Fu, ZENG Ti-xian. 含非正则涡旋对的部分相干光束的空间相关奇点与轨道角动量谱[J]. Chinese Optics. doi: 10.37188/CO.EN.2025-0001
    [6]WANG Hua-xin, WANG Tong, XIONG Han. Measurement of orbital angular momentum of vortex beam by topological charge difference[J]. Chinese Optics, 2025, 18(2): 216-223. doi: 10.37188/CO.2024-0141
    [7]YU Hai-yang, SHANG Fan-hua, WANG Yu-xing, WANG Da-tao, CHEN Chun-yi. Recognition method for vortex beams orbital angular momentum with imbalanced label[J]. Chinese Optics, 2025, 18(2): 207-215. doi: 10.37188/CO.2024-0155
    [8]PEI Hui-yi, JIANG Lun, WANG Jin-jiang, CUI Yong, FANG Yuan-xiang, ZHANG Jia-ming, CHEN Ci. Phase distortion correction of fringe patterns in spaceborne Doppler asymmetric spatial heterodyne interferometry[J]. Chinese Optics, 2025, 18(2): 382-392. doi: 10.37188/CO.EN-2024-0007
    [9]基于液晶空间光调制器的全息再现像设计[J]. Chinese Optics. doi: 10.37188/CO.2024-0224
    [10]ZHOU Chen, MA Liu-hao, WANG Yu. Measurement of methane concentration with wide dynamic range using heterodyne phase-sensitive dispersion spectroscopy[J]. Chinese Optics, 2024, 17(4): 789-800. doi: 10.37188/CO.2023-0177
    [11]ZHANG Xu, LI Shi-jie, LIU Bing-cai, TIAN Ai-ling, LIANG Hai-feng, CAI Chang-long. A non-null interferometry for concave aspheric surface[J]. Chinese Optics, 2024, 17(1): 140-149. doi: 10.37188/CO.2023-0042
    [12]SUN Yi-yang, XU Jin-kai, YU Zhan-jiang, ZHANG Xiang-hui, CHENG Ya-ya, YU Hua-dong. Coaxial holographic reconstruction method of micro-milling tool pose[J]. Chinese Optics, 2022, 15(2): 355-363. doi: 10.37188/CO.2021-0089
    [13]GUAN Hai-jun, LIU Yun-qing, ZHANG Feng-jing. Coherent free-space optical communication system with quadrature phase-shift keying modulation using a digital phase recovery algorithm[J]. Chinese Optics, 2019, 12(5): 1131-1138. doi: 10.3788/CO.20191205.1131
    [14]SONG Fang-xi, MENG Wei-dong, XIA Yan, CHEN Yan, PU Xiao-yun. Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens[J]. Chinese Optics, 2018, 11(4): 630-643. doi: 10.3788/CO.20181104.0630
    [15]YAN Gong-jing, ZHANG Xian-zhong. Research on non-null convex aspherical sub-aperture stitching detection technology[J]. Chinese Optics, 2018, 11(5): 798-803. doi: 10.3788/CO.20181105.0798
    [16]QI Zi-wen, LIU Bing-guo, ZHANG Zhong-hai, LU Bing-hui, LIU Guo-dong. Comparison of phase extraction algorithms in testing of phase defects with two-point interference[J]. Chinese Optics, 2016, 9(4): 483-490. doi: 10.3788/CO.20160904.0483
    [17]LI Xin-xi, WANG Yan, WANG Yun, HUANG Chao-qiang, ZHANG Ying. Design of compact neutron spin flipper based on cold neutron spectrum[J]. Chinese Optics, 2014, 7(4): 600-607. doi: 10.3788/CO.20140704.0600
    [18]SU Zhi-de, SHI Zhen-guang, PENG Ji, SUI Yong-xin, YANG Huai-jiang. Implementation of accurate phase shift in Fizeau interferometer[J]. Chinese Optics, 2013, 6(2): 244-250. doi: 10.3788/CO.20130602.0244
    [19]YANG T, HO H P. Simulation and analysis of phase-sensitive surface plasmon resonance sensor based on enhanced optical transmission through arrays of nanoholes in silver films[J]. Chinese Optics, 2010, 3(1): 57-63.
    [20]ZHANG Wei-lai, SONG Ke-fei, WANG Yun-lei, PAN Li-hua, MA Qing-jun, WANG Long-qi, LIU Hai-bo. Design of data acquistion of solid-phase time-resolved fluorescence immunoassay instrument[J]. Chinese Optics, 2009, 2(4): 316-321.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.4 %FULLTEXT: 24.4 %META: 68.5 %META: 68.5 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 3.3 %其他: 3.3 %其他: 0.4 %其他: 0.4 %Central District: 0.2 %Central District: 0.2 %China: 1.1 %China: 1.1 %Cote D'ivoire: 0.1 %Cote D'ivoire: 0.1 %India: 0.2 %India: 0.2 %Kennedy Town: 0.1 %Kennedy Town: 0.1 %Lemont: 0.0 %Lemont: 0.0 %Netherlands: 0.0 %Netherlands: 0.0 %Norman: 0.0 %Norman: 0.0 %Philippines: 0.1 %Philippines: 0.1 %Russian Federation: 0.0 %Russian Federation: 0.0 %United Kingdom: 0.1 %United Kingdom: 0.1 %United States: 0.2 %United States: 0.2 %[]: 0.1 %[]: 0.1 %上海: 2.3 %上海: 2.3 %东莞: 0.6 %东莞: 0.6 %东营: 0.2 %东营: 0.2 %临汾: 0.1 %临汾: 0.1 %丽水: 0.1 %丽水: 0.1 %佳木斯: 0.1 %佳木斯: 0.1 %克拉玛依: 0.1 %克拉玛依: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 6.8 %北京: 6.8 %十堰: 0.1 %十堰: 0.1 %南京: 0.7 %南京: 0.7 %南昌: 0.2 %南昌: 0.2 %厦门: 0.3 %厦门: 0.3 %台州: 0.9 %台州: 0.9 %合肥: 0.3 %合肥: 0.3 %吉林: 0.0 %吉林: 0.0 %吕梁: 0.2 %吕梁: 0.2 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.2 %咸阳: 0.2 %哈尔滨: 1.3 %哈尔滨: 1.3 %商洛: 0.1 %商洛: 0.1 %喀什: 0.0 %喀什: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %圣彼得堡: 0.2 %圣彼得堡: 0.2 %塔城: 0.1 %塔城: 0.1 %大同: 0.3 %大同: 0.3 %大庆: 0.3 %大庆: 0.3 %大连: 0.2 %大连: 0.2 %天津: 1.4 %天津: 1.4 %太原: 0.4 %太原: 0.4 %威海: 0.1 %威海: 0.1 %孝感: 0.0 %孝感: 0.0 %安大略: 0.0 %安大略: 0.0 %安康: 0.4 %安康: 0.4 %宜昌: 0.0 %宜昌: 0.0 %宣城: 0.0 %宣城: 0.0 %巴中: 0.0 %巴中: 0.0 %广州: 0.4 %广州: 0.4 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.0 %开封: 0.0 %张家口: 1.7 %张家口: 1.7 %徐州: 0.1 %徐州: 0.1 %惠州: 0.1 %惠州: 0.1 %成都: 0.9 %成都: 0.9 %扬州: 0.3 %扬州: 0.3 %揭阳: 0.0 %揭阳: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.4 %昆明: 0.4 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.0 %朝阳: 0.0 %杭州: 1.7 %杭州: 1.7 %桂林: 0.4 %桂林: 0.4 %榆林: 0.0 %榆林: 0.0 %武汉: 1.9 %武汉: 1.9 %江门: 0.0 %江门: 0.0 %沈阳: 0.6 %沈阳: 0.6 %泉州: 0.1 %泉州: 0.1 %法国上法兰西格拉沃利讷: 0.0 %法国上法兰西格拉沃利讷: 0.0 %法尔肯施泰因: 0.0 %法尔肯施泰因: 0.0 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.6 %济南: 0.6 %淄博: 0.0 %淄博: 0.0 %深圳: 0.9 %深圳: 0.9 %温州: 0.0 %温州: 0.0 %湖州: 1.0 %湖州: 1.0 %湛江: 0.0 %湛江: 0.0 %滨州: 0.3 %滨州: 0.3 %漯河: 0.2 %漯河: 0.2 %潮州: 0.2 %潮州: 0.2 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.2 %烟台: 0.2 %焦作: 0.1 %焦作: 0.1 %珠海: 0.2 %珠海: 0.2 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.5 %秦皇岛: 0.5 %芒廷维尤: 12.6 %芒廷维尤: 12.6 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.2 %苏州: 0.2 %茂名: 0.0 %茂名: 0.0 %荆州: 0.1 %荆州: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.5 %衢州: 0.5 %西宁: 37.2 %西宁: 37.2 %西安: 2.4 %西安: 2.4 %西雅图: 0.0 %西雅图: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵阳: 0.2 %贵阳: 0.2 %费利蒙: 0.0 %费利蒙: 0.0 %运城: 0.6 %运城: 0.6 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.5 %郑州: 0.5 %鄂尔多斯: 0.0 %鄂尔多斯: 0.0 %重庆: 0.9 %重庆: 0.9 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %长春: 1.8 %长春: 1.8 %长春市朝阳区: 0.3 %长春市朝阳区: 0.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.2 %长治: 0.2 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.6 %青岛: 0.6 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %驻马店: 0.3 %驻马店: 0.3 %黄石: 0.2 %黄石: 0.2 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他Central DistrictChinaCote D'ivoireIndiaKennedy TownLemontNetherlandsNormanPhilippinesRussian FederationUnited KingdomUnited States[]上海东莞东营临汾丽水佳木斯克拉玛依兰州北京十堰南京南昌厦门台州合肥吉林吕梁呼和浩特咸阳哈尔滨商洛喀什嘉兴圣彼得堡塔城大同大庆大连天津太原威海孝感安大略安康宜昌宣城巴中广州廊坊延安开封张家口徐州惠州成都扬州揭阳无锡昆明晋城朝阳杭州桂林榆林武汉江门沈阳泉州法国上法兰西格拉沃利讷法尔肯施泰因洛阳济南淄博深圳温州湖州湛江滨州漯河潮州濮阳烟台焦作珠海盘锦石家庄福州秦皇岛芒廷维尤芝加哥苏州茂名荆州衡水衡阳衢州西宁西安西雅图诺沃克贵阳费利蒙运城邯郸郑州鄂尔多斯重庆银川锦州长春长春市朝阳区长沙长治阳泉阿什本青岛香港香港特别行政区驻马店黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(1682) PDF downloads(176) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return