Citation: | LIU Yi-tian, CHEN Qi-kai, TANG Zhi-yuan, ZHAO Qing, PIAN Si-jie, LIU Xin-hang, LIN Hong-tao, HAO Xiang, LIU Xu, MA Yao-guang. Research progress of aberration analysis and imaging technology based on metalens[J]. Chinese Optics, 2021, 14(4): 831-850. doi: 10.37188/CO.2021-0014 |
[1] |
BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
|
[2] |
ZHANG L, MEI SH T, HUANG K, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 2016, 4(6): 818-833. doi: 10.1002/adom.201500690
|
[3] |
YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
|
[4] |
AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v
|
[5] |
WAN X, JIANG W X, MA H F, et al. A broadband transformation-optics metasurface lens[J]. Applied Physics Letters, 2014, 104(15): 151601. doi: 10.1063/1.4870809
|
[6] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194.
|
[7] |
ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
|
[8] |
NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807
|
[9] |
HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808
|
[10] |
PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
|
[11] |
GUO Y H, PU M B, ZHAO Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564
|
[12] |
DING F, WANG ZH X, HE S L, et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach[J]. ACS Nano, 2015, 9(4): 4111-4119. doi: 10.1021/acsnano.5b00218
|
[13] |
PFEIFFER C, ZHANG CH, RAY V, et al. Polarization rotation with ultra-thin bianisotropic metasurfaces[J]. Optica, 2016, 3(4): 427-432. doi: 10.1364/OPTICA.3.000427
|
[14] |
LI Y Y, CAO L Y, WEN ZH Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Optics Letters, 2019, 44(1): 110-113. doi: 10.1364/OL.44.000110
|
[15] |
WU ZH X, DONG F L, ZHANG SH, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180-189. doi: 10.1021/acsphotonics.9b01356
|
[16] |
KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi: 10.1126/science.aam8100
|
[17] |
KANG M, FENG T H, WANG H T, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882-15890. doi: 10.1364/OE.20.015882
|
[18] |
KANG M, CHEN J, WANG X L, et al. Twisted vector field from an inhomogeneous and anisotropic metamaterial[J]. Journal of the Optical Society of America B, 2012, 29(4): 572-576. doi: 10.1364/JOSAB.29.000572
|
[19] |
VERSLEGERS L, CATRYSSE P B, YU Z F, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y
|
[20] |
CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. doi: 10.1038/ncomms2207
|
[21] |
NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686
|
[22] |
PORS A, NIELSEN M G, ERIKSEN R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834. doi: 10.1021/nl304761m
|
[23] |
KATS M A, GENEVET P, AOUST G, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12364-12368. doi: 10.1073/pnas.1210686109
|
[24] |
ZHANG X Q, TIAN ZH, YUE W SH, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850
|
[25] |
NI X J, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science &Applications, 2013, 2(4): e72.
|
[26] |
GAO H W, HYUN J K, LEE M H, et al. Broadband plasmonic microlenses based on patches of nanoholes[J]. Nano Letters, 2010, 10(10): 4111-4116. doi: 10.1021/nl1022892
|
[27] |
LIN L, GOH X M, MCGUINNESS L P, et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J]. Nano Letters, 2010, 10(5): 1936-1940. doi: 10.1021/nl1009712
|
[28] |
LOVE A E H. The integration of the equations of propagation of electric waves[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1901, 197(287-299): 1-45.
|
[29] |
SCHELKUNOFF S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J]. The Bell System Technical Journal, 1936, 15(1): 92-112. doi: 10.1002/j.1538-7305.1936.tb00720.x
|
[30] |
PFEIFFER C, GRBIC A. Metamaterial huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401
|
[31] |
ZHANG L, DING J, ZHENG H Y, et al. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics[J]. Nature Communications, 2018, 9(1): 1481. doi: 10.1038/s41467-018-03831-7
|
[32] |
KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234. doi: 10.1021/acs.nanolett.6b03626
|
[33] |
ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi: 10.1038/ncomms8069
|
[34] |
PANCHARATNAM S. Generalized theory of interference and its applications: part II. partially coherent pencils[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417. doi: 10.1007/BF03046095
|
[35] |
BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1984, 392(1802): 45-57.
|
[36] |
WANG A, CHEN ZH M, DAN Y P. Planar metalenses in the mid-infrared[J]. AIP Advances, 2019, 9(8): 085327. doi: 10.1063/1.5124074
|
[37] |
WANG SH M, SUN X H, CHEN D L, et al. The investigation of height-dependent meta-lens and focusing properties[J]. Optics Communications, 2019, 460: 125129.
|
[38] |
TANG F, YE X, LI Q ZH, et al. Dielectric metalenses at long-wave infrared wavelengths: multiplexing and spectroscope[J]. Results in Physics, 2020, 18: 103215. doi: 10.1016/j.rinp.2020.103215
|
[39] |
LIANG Y Y, LIU H ZH, WANG F Q, et al. High-efficiency, near-diffraction limited, dielectric metasurface lenses based on crystalline titanium dioxide at visible wavelengths[J]. Nanomaterials, 2018, 8(5): 288. doi: 10.3390/nano8050288
|
[40] |
CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Letters, 2017, 17(5): 3188-3194. doi: 10.1021/acs.nanolett.7b00717
|
[41] |
CHEN B H, WU P C, SU V C, et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 2017, 17(10): 6345-6352. doi: 10.1021/acs.nanolett.7b03135
|
[42] |
WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
|
[43] |
ZHANG CH, DIVITT S, FAN Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light:Science &Applications, 2020, 9(1): 55.
|
[44] |
GUO L H, HU Z L, WAN R Q, et al. Design of aluminum nitride metalens for broadband ultraviolet incidence routing[J]. Nanophotonics, 2018, 8(1): 171-180. doi: 10.1515/nanoph-2018-0151
|
[45] |
GENEVET P, CAPASSO F, AIETA F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. doi: 10.1364/OPTICA.4.000139
|
[46] |
AIETA F, GENEVET P, KATS M, et al. Aberrations of flat lenses and aplanatic metasurfaces[J]. Optics Express, 2013, 21(25): 31530-31539. doi: 10.1364/OE.21.031530
|
[47] |
LI W ZH, QI J R, SIHVOLA A. Meta-imaging: from non-computational to computational[J]. Advanced Optical Materials, 2020, 8(23): 2001000. doi: 10.1002/adom.202001000
|
[48] |
CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
|
[49] |
BURALLI D A, MORRIS G M. Design of a wide field diffractive landscape lens[J]. Applied Optics, 1989, 28(18): 3950-3959. doi: 10.1364/AO.28.003950
|
[50] |
KLEINHANS W A. Aberrations of curved zone plates and Fresnel lenses[J]. Applied Optics, 1977, 16(6): 1701-1704. doi: 10.1364/AO.16.001701
|
[51] |
PRESUTTI F, MONTICONE F. Focusing on bandwidth: achromatic metalens limits[J]. Optica, 2020, 7(6): 624-631. doi: 10.1364/OPTICA.389404
|
[52] |
FAN ZH B, SHAO Z K, XIE M Y, et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 2018, 10(1): 014005. doi: 10.1103/PhysRevApplied.10.014005
|
[53] |
SHE A L, ZHANG SH Y, SHIAN S, et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Optics Express, 2018, 26(2): 1573-1585. doi: 10.1364/OE.26.001573
|
[54] |
PANIAGUA-DOMÍNGUEZ R, YU Y F, KHAIDAROV E, et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 18(3): 2124-2132. doi: 10.1021/acs.nanolett.8b00368
|
[55] |
CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens[J]. Advanced Optical Materials, 2013, 1(7): 517-521. doi: 10.1002/adom.201300102
|
[56] |
LIANG H W, LIN Q L, XIE X SH, et al. Ultrahigh numerical aperture metalens at visible wavelengths[J]. Nano Letters, 2018, 18(7): 4460-4466. doi: 10.1021/acs.nanolett.8b01570
|
[57] |
ARBABI A, ARBABI E, KAMALI S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 2016, 7: 13682. doi: 10.1038/ncomms13682
|
[58] |
GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902-4907. doi: 10.1021/acs.nanolett.7b01888
|
[59] |
SHALAGINOV M Y, AN S S, YANG F, et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 2020, 20(10): 7429-7437. doi: 10.1021/acs.nanolett.0c02783
|
[60] |
CHU H J, QI J R, WANG R, et al. Generalized rayleigh-sommerfeld diffraction theory for metasurface-modulating paraxial and non-paraxial near-field pattern estimation[J]. IEEE Access, 2019, 7: 57642-57650. doi: 10.1109/ACCESS.2019.2913956
|
[61] |
AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494
|
[62] |
ZHOU Y, KRAVCHENKO I I, WANG H, et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 2018, 18(12): 7529-7537. doi: 10.1021/acs.nanolett.8b03017
|
[63] |
ARBABI E, ARBABI A, KAMALI S M, et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces[J]. Optica, 2017, 4(6): 625-632. doi: 10.1364/OPTICA.4.000625
|
[64] |
KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
|
[65] |
WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
|
[66] |
CHEN W T, ZHU A Y, SISLER J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 2019, 10(1): 355. doi: 10.1038/s41467-019-08305-y
|
[67] |
CHEN W T, ZHU A Y, SISLER J, et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 2018, 18(12): 7801-7808. doi: 10.1021/acs.nanolett.8b03567
|
[68] |
LI M M, LI SH SH, CHIN L K, et al. Dual-layer achromatic metalens design with an effective Abbe number[J]. Optics Express, 2020, 28(18): 26041-26055. doi: 10.1364/OE.402478
|
[69] |
LI ZH Y, LIN P, HUANG Y W, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J]. Science Advances, 2021, 7(5): eabe4458. doi: 10.1126/sciadv.abe4458
|
[70] |
郁道银, 谈恒英. 工程光学[M]. 北京: 机械工业出版社, 2016.
YU D Y, TAN H Y. Engineering Optics[M]. Beijing: China Machine Press, 2016. (in Chinese)
|
[71] |
YUE F Y, WEN D D, XIN J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563. doi: 10.1021/acsphotonics.6b00392
|
[72] |
YANG Y M, WANG W Y, MOITRA P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3): 1394-1399. doi: 10.1021/nl4044482
|
[73] |
GAO H, PU M B, LI X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12): 13933-13943. doi: 10.1364/OE.25.013933
|
[74] |
MEI SH T, MEHMOOD M Q, HUSSAIN S, et al. Flat helical nanosieves[J]. Advanced Functional Materials, 2016, 26(29): 5255-5262. doi: 10.1002/adfm.201601345
|
[75] |
CHEN W T, KHORASANINEJAD M, ZHU A Y, et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light:Science &Applications, 2017, 6(5): e16259.
|
[76] |
ZHU Y ZH, WEI D ZH, KUANG Z Y, et al. Broadband variable meta-axicons based on nano-aperture arrays in a metallic film[J]. Scientific Reports, 2018, 8(1): 11591. doi: 10.1038/s41598-018-29265-1
|
[77] |
LI T. New opportunities for metalenses in imaging applications[J]. Science China Physics,Mechanics &Astronomy, 2020, 63(8): 284231.
|
[78] |
PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 2018, 12(9): 540-547. doi: 10.1038/s41566-018-0224-2
|
[79] |
ZHOU Y, ZHENG H Y, KRAVCHENKO I I, et al. Flat optics for image differentiation[J]. Nature Photonics, 2020, 14(5): 316-323. doi: 10.1038/s41566-020-0591-3
|
[80] |
XU B B, LI H M, GAO SH L, et al. Metalens-integrated compact imaging devices for wide-field microscopy[J]. Advanced Photonics, 2020, 2(6): 066004.
|
[81] |
LIN R J, SU V C, WANG SH M, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi: 10.1038/s41565-018-0347-0
|
[82] |
GHOLIPOUR B, ZHANG J F, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 2013, 25(22): 3050-3054. doi: 10.1002/adma.201300588
|
[83] |
MICHEL A K U, CHIGRIN D N, Maß T W W, et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J]. Nano Letters, 2013, 13(8): 3470-3475. doi: 10.1021/nl4006194
|
[84] |
QU Y R, LI Q, CAI L, et al. Thermal camouflage based on the phase-changing material GST[J]. Light:Science &Applications, 2018, 7: 26.
|
[85] |
BAI W, YANG P, HUANG J, et al. Near-infrared tunable metalens based on phase change material Ge2Sb2Te5[J]. Scientific Reports, 2019, 9(1): 5368. doi: 10.1038/s41598-019-41859-x
|
[86] |
CHU CH H, TSENG M L, CHEN J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser &Photonics Reviews, 2016, 10(6): 986-994.
|
[87] |
KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961-3968. doi: 10.1021/acs.nanolett.9b01246
|
[88] |
SHALAGINOV M Y, AN S S, ZHANG Y F, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications, 2021, 12(1): 1225. doi: 10.1038/s41467-021-21440-9
|
[89] |
YU P, LI J X, ZHANG SH, et al. Dynamic janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584-4589. doi: 10.1021/acs.nanolett.8b01848
|
[90] |
SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
|
[91] |
EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618
|
[92] |
PAPAIOANNOU M, PLUM E, ROGERS E T F, et al. All-optical dynamic focusing of light via coherent absorption in a plasmonic metasurface[J]. Light:Science &Applications, 2018, 7(3): 17157.
|
[93] |
ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9: 812. doi: 10.1038/s41467-018-03155-6
|
[94] |
CHEN CH, SONG W G, CHEN J W, et al. Spectral tomographic imaging with aplanatic metalens[J]. Light:Science &Applications, 2019, 8: 99.
|
[95] |
LININGER A, ZHU A Y, PARK J S, et al. Optical properties of metasurfaces infiltrated with liquid crystals[J]. Proceedings of the National Academy of Sciences of the United Stated of America, 2020, 117(34): 20390-20396. doi: 10.1073/pnas.2006336117
|
[96] |
LIU W W, CHENG H, TIAN J G, et al. Diffractive metalens: from fundamentals, practical applications to current trends[J]. Advances in Physics:X, 2020, 5(1): 1742584. doi: 10.1080/23746149.2020.1742584
|
[97] |
BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi: 10.1364/OPTICA.6.000805
|
[98] |
ENGELBERG J, LEVY U. The advantages of metalenses over diffractive lenses[J]. Nature Communications, 2020, 11(1): 1991. doi: 10.1038/s41467-020-15972-9
|