Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
ZHENG Jia-lu, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, BAO Qiao-liang. Twisted van der Waals materials for photonics[J]. Chinese Optics, 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023
Citation: ZHENG Jia-lu, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, BAO Qiao-liang. Twisted van der Waals materials for photonics[J]. Chinese Optics, 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023

Twisted van der Waals materials for photonics

Funds:  Supported by Shenzhen Nanshan District Pilotage Team Program (No. LHTD20170006); the Natural Science Foundation Research Project of Shaanxi Province (No. 2021JQ-603)
More Information
  • Polaritons are half-light, half-matter quasi-particles formed by the interaction of light and different polarons. They can be applied for light-control at sub-wavelength scales and have shown intriguing potential for optical imaging, enhanced nonlinear optics and novel metamaterial design. Recent advances in the twistronics of two-dimensional van der Waals materials have enabled a vast variety of extraordinary phenomena associated with moiré physics, which also inspired new direction for the research of polaritons. In this article, we briefly review the rise of “twist-photonics”, including plasmon polaritons in twisted graphene system, exciton polaritons in a twisted transition-metal dichalcogenide system and phonon polaritons in a twisted h-BN and α-MoO3 system. Twist van der Waals materials may offer new directions to manipulate light-matter interactions at nanoscale.

     

  • loading
  • [1]
    DAI ZH G, HU G W, SI G Y, et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nature Communications, 2020, 11(1): 6086. doi: 10.1038/s41467-020-19913-4
    [2]
    MA W L, SHABBIR B, OU Q D, et al. Anisotropic polaritons in van der Waals materials[J]. InfoMat, 2020, 2(5): 777-790. doi: 10.1002/inf2.12119
    [3]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
    [4]
    BAO Q L, LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694. doi: 10.1021/nn300989g
    [5]
    XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. doi: 10.1038/nphoton.2014.271
    [6]
    LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2): 182-194. doi: 10.1038/nmat4792
    [7]
    KHURGIN J B, SUN G. In search of the elusive lossless metal[J]. Applied Physics Letters, 2010, 96(18): 181102. doi: 10.1063/1.3425890
    [8]
    HU F, LUAN Y, SCOTT M E, et al. Imaging exciton–polariton transport in MoSe2 waveguides[J]. Nature Photonics, 2017, 11(6): 356-360. doi: 10.1038/nphoton.2017.65
    [9]
    CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68. doi: 10.1515/nanoph-2014-0003
    [10]
    HU G W, SHEN J L, QIU CH W, et al. Phonon polaritons and hyperbolic response in van der waals materials[J]. Advanced Optical Materials, 2020, 8(5): 1901393. doi: 10.1002/adom.201901393
    [11]
    CARR S, MASSATT D, FANG SH A, et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J]. Physical Review B, 2017, 95(7): 075420. doi: 10.1103/PhysRevB.95.075420
    [12]
    CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. doi: 10.1038/nature26154
    [13]
    CAO Y, FATEMI V, FANG SH A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi: 10.1038/nature26160
    [14]
    JIANG L L, SHI ZH W, ZENG B, et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J]. Nature Materials, 2016, 15(8): 840-844. doi: 10.1038/nmat4653
    [15]
    SUNKU S S, NI G X, JIANG B Y, et al. Photonic crystals for nano-light in moiré graphene superlattices[J]. Science, 2018, 362(6419): 1153-1156. doi: 10.1126/science.aau5144
    [16]
    TRAN K, MOODY G, WU F CH, et al. Evidence for moire excitons in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 71-75. doi: 10.1038/s41586-019-0975-z
    [17]
    SEYLER K L, RIVERA P, YU H Y, et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 2019, 567(7746): 66-70. doi: 10.1038/s41586-019-0957-1
    [18]
    JIN CH H, REGAN E C, YAN A M, et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 2019, 567(7746): 76-80. doi: 10.1038/s41586-019-0976-y
    [19]
    ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M, et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86. doi: 10.1038/s41586-019-0986-9
    [20]
    NI G X, WANG H, JIANG B Y, et al. Soliton superlattices in twisted hexagonal boron nitride[J]. Nature Communications, 2019, 10(1): 4360. doi: 10.1038/s41467-019-12327-x
    [21]
    HU G W, OU Q D, SI G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209-213. doi: 10.1038/s41586-020-2359-9
    [22]
    MA W L, ALONSO-GONZÁLEZ P, LI SH J, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 2018, 562(7728): 557-562. doi: 10.1038/s41586-018-0618-9
    [23]
    ZHENG Z B, XU N SH, OSCURATO S L, et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Science Advances, 2019, 5(5): eaav8690. doi: 10.1126/sciadv.aav8690
    [24]
    WU Y J, OU Q D, YIN Y F, et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation[J]. Nature Communications, 2020, 11(1): 2646. doi: 10.1038/s41467-020-16459-3
    [25]
    ALCARAZ IRANZO D, NANOT S, DIAS E J C, et al. Probing the ultimate plasmon confinement limits with a van der waals heterostructure[J]. Science, 2018, 360(6386): 291-295. doi: 10.1126/science.aar8438
    [26]
    NI G X, WANG H, WU J S, et al. Plasmons in graphene moiré superlattices[J]. Nature Materials, 2015, 14(12): 1217-1222. doi: 10.1038/nmat4425
    [27]
    FEI Z, RODIN A S, ANDREEV G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85. doi: 10.1038/nature11253
    [28]
    CHEN J N, BADIOLI M, ALONSO-GONZÁLEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi: 10.1038/nature11254
    [29]
    WOESSNER A, LUNDEBERG M B, GAO Y D, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 2015, 14(4): 421-425. doi: 10.1038/nmat4169
    [30]
    NI G X, WANG L, GOLDFLAM M D, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene[J]. Nature Photonics, 2016, 10(4): 244-247. doi: 10.1038/nphoton.2016.45
    [31]
    吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展[J]. 物理学报,2019,68(22):220303. doi: 10.7498/aps.68.20191317

    LÜ X Y, LI ZH Q. Topological properties of graphene moiré superlattice systems and recent optical studies[J]. Acta Physica Sinica, 2019, 68(22): 220303. (in Chinese) doi: 10.7498/aps.68.20191317
    [32]
    DAI ZH G, HU G W, OU Q D, et al. Artificial metaphotonics born naturally in two dimensions[J]. Chemical Reviews, 2020, 120(13): 6197-6246. doi: 10.1021/acs.chemrev.9b00592
    [33]
    SUN J B, ZHOU J, LI B, et al. Indefinite permittivity and negative refraction in natural material: graphite[J]. Applied Physics Letters, 2011, 98(10): 101901. doi: 10.1063/1.3562033
    [34]
    JACOB Z, ALEKSEYEV L V, NARIMANOV E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247-8256. doi: 10.1364/OE.14.008247
    [35]
    RHO J, YE Z L, XIONG Y, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J]. Nature Communications, 2010, 1(1): 143. doi: 10.1038/ncomms1148
    [36]
    LU D, KAN J J, FULLERTON E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48-53. doi: 10.1038/nnano.2013.276
    [37]
    SHALAGINOV M Y, ISHII S, LIU J, et al. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials[J]. Applied Physics Letters, 2013, 102(17): 173114. doi: 10.1063/1.4804262
    [38]
    SREEKANTH K V, BIAGLOW T, STRANGI G. Directional spontaneous emission enhancement in hyperbolic metamaterials[J]. Journal of Applied Physics, 2013, 114(13): 134306. doi: 10.1063/1.4824287
    [39]
    TUMKUR T, ZHU G, BLACK P, et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial[J]. Applied Physics Letters, 2011, 99(15): 151115. doi: 10.1063/1.3631723
    [40]
    NOGINOV M A, LI H, BARNAKOV Y A, et al. Controlling spontaneous emission with metamaterials[J]. Optics Letters, 2010, 35(11): 1863-1865. doi: 10.1364/OL.35.001863
    [41]
    WURTZ G A, POLLARD R, HENDREN W, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology, 2011, 6(2): 107-111. doi: 10.1038/nnano.2010.278
    [42]
    KABASHIN A V, EVANS P, PASTKOVSKY S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nature Materials, 2009, 8(11): 867-871. doi: 10.1038/nmat2546
    [43]
    ALDEN J S, TSEN A W, HUANG P Y, et al. Strain solitons and topological defects in bilayer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11256-11260. doi: 10.1073/pnas.1309394110
    [44]
    JIANG B Y, NI G X, ADDISON Z, et al. Plasmon reflections by topological electronic boundaries in bilayer graphene[J]. Nano Letters, 2017, 17(11): 7080-7085. doi: 10.1021/acs.nanolett.7b03816
    [45]
    FEI Z, RODIN A S, GANNETT W, et al. Electronic and plasmonic phenomena at graphene grain boundaries[J]. Nature Nanotechnology, 2013, 8(11): 821-825. doi: 10.1038/nnano.2013.197
    [46]
    SONG Y, DERY H. Transport theory of monolayer transition-metal dichalcogenides through symmetry[J]. Physical Review Letters, 2013, 111(2): 026601. doi: 10.1103/PhysRevLett.111.026601
    [47]
    JU L, SHI ZH W, NAIR N, et al. Topological valley transport at bilayer graphene domain walls[J]. Nature, 2015, 520(7549): 650-655. doi: 10.1038/nature14364
    [48]
    HU G W, KRASNOK A, MAZOR Y, et al. Moiré hyperbolic metasurfaces[J]. Nano Letters, 2020, 20(5): 3217-3224. doi: 10.1021/acs.nanolett.9b05319
    [49]
    张子洁, 梁瑜章, 徐挺. 双曲超材料及超表面研究进展[J]. 光电工程,2017,44(3):276-288. doi: 10.3969/j.issn.1003-501X.2017.03.002

    ZHANG Z J, LIANG Y ZH, XU T. Research advances of hyperbolic metamaterials and metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 276-288. (in Chinese) doi: 10.3969/j.issn.1003-501X.2017.03.002
    [50]
    HIGH A A, DEVLIN R C, DIBOS A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192-196. doi: 10.1038/nature14477
    [51]
    GOMEZ-DIAZ J S, TYMCHENKO M, ALÙ A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces[J]. Physical Review Letters, 2015, 114(23): 233901. doi: 10.1103/PhysRevLett.114.233901
    [52]
    CORREAS-SERRANO D, GOMEZ-DIAZ J S, MELCON A A, et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization[J]. Journal of Optics, 2016, 18(10): 104006. doi: 10.1088/2040-8978/18/10/104006
    [53]
    LI P N, DOLADO I, ALFARO-MOZAZ F J, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 2018, 359(6378): 892-896. doi: 10.1126/science.aaq1704
    [54]
    NEMILENTSAU A, LOW T, HANSON G. Anisotropic 2D materials for tunable hyperbolic plasmonics[J]. Physical Review Letters, 2016, 116(6): 066804. doi: 10.1103/PhysRevLett.116.066804
    [55]
    GOMEZ-DIAZ J S, ALÙ A. Flatland optics with hyperbolic metasurfaces[J]. ACS Photonics, 2016, 3(12): 2211-2224. doi: 10.1021/acsphotonics.6b00645
    [56]
    BELASHCHENKO K D, VAN SCHILFGAARDE M, ANTROPOV V P. Coexistence of covalent and metallic bonding in the boron intercalation superconductor MgB2[J]. Physical Review B, 2001, 64(9): 092503. doi: 10.1103/PhysRevB.64.092503
    [57]
    GURITANU V, KUZMENKO A B, Van Der MAREL D, et al. Anisotropic optical conductivity and two colors of MgB2[J]. Physical Review B, 2006, 73(10): 104509. doi: 10.1103/PhysRevB.73.104509
    [58]
    NEE T W. Anisotropic optical properties of YBa2Cu3O7[J]. Journal of Applied Physics, 1992, 71(12): 6002-6007. doi: 10.1063/1.350454
    [59]
    KORZEB K, GAJC M, PAWLAK D A. Compendium of natural hyperbolic materials[J]. Optics Express, 2015, 23(20): 25406-25424. doi: 10.1364/OE.23.025406
    [60]
    SUN J B, LITCHINITSER N M, ZHOU J. Indefinite by nature: from ultraviolet to terahertz[J]. ACS Photonics, 2014, 1(4): 293-303. doi: 10.1021/ph4000983
    [61]
    CALDWELL J D, KRETININ A V, CHEN Y G, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J]. Nature Communications, 2014, 5(1): 5221. doi: 10.1038/ncomms6221
    [62]
    ALEKSEYEV L V, PODOLSKIY V A, NARIMANOV E E. Homogeneous hyperbolic systems for terahertz and far-infrared frequencies[J]. Advances in OptoElectronics, 2012, 2012: 267564.
    [63]
    GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126. doi: 10.1016/j.pmatsci.2015.02.002
    [64]
    LOW T, ROLDÁN R, WANG H, et al. Plasmons and screening in monolayer and multilayer black phosphorus[J]. Physical Review Letters, 2014, 113(10): 106802. doi: 10.1103/PhysRevLett.113.106802
    [65]
    RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801. doi: 10.1103/PhysRevLett.112.176801
    [66]
    LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434. doi: 10.1103/PhysRevB.90.075434
    [67]
    LIU Z ZH, AYDIN K. Localized surface plasmons in nanostructured monolayer black phosphorus[J]. Nano Letters, 2016, 16(6): 3457-3462. doi: 10.1021/acs.nanolett.5b05166
    [68]
    CAO Y, CHOWDHURY D, RODAN-LEGRAIN D, et al. Strange metal in magic-angle graphene with near planckian dissipation[J]. Physical Review Letters, 2020, 124(7): 076801. doi: 10.1103/PhysRevLett.124.076801
    [69]
    NEUNER III B, KOROBKIN D, FIETZ C, et al. Midinfrared index sensing of pL-scale analytes based on surface phonon polaritons in silicon carbide[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7489-7491. doi: 10.1021/jp9114139
    [70]
    DAI S, FEI Z, MA Q, et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 2014, 343(6175): 1125-1129. doi: 10.1126/science.1246833
    [71]
    LI P N, LEWIN M, KRETININ A V, et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing[J]. Nature Communications, 2015, 6(1): 7507. doi: 10.1038/ncomms8507
    [72]
    LI P, DOLADO I, ALFARO-MOZAZ F J, et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials[J]. Nano Letters, 2017, 17(1): 228-235. doi: 10.1021/acs.nanolett.6b03920
    [73]
    LI P N, HU G W, DOLADO I, et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization[J]. Nature Communications, 2020, 11(1): 3663. doi: 10.1038/s41467-020-17425-9
    [74]
    LI N, GUO X D, YANG X X, et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride[J]. Nature Materials, 2021, 20(1): 43-48. doi: 10.1038/s41563-020-0763-z
    [75]
    HU H, YANG X X, ZHAI F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 2016, 7(1): 12334. doi: 10.1038/ncomms12334
    [76]
    HU D B, YANG X X, LI CH, et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging[J]. Nature Communications, 2017, 8(1): 1471. doi: 10.1038/s41467-017-01580-7
    [77]
    HU D B, CHEN K, CHEN X ZH, et al. Tunable modal birefringence in a low-loss van der waals waveguide[J]. Advanced Materials, 2019, 31(27): 1807788. doi: 10.1002/adma.201807788
    [78]
    HU H, YANG X X, GUO X D, et al. Gas identification with graphene plasmons[J]. Nature Communications, 2019, 10(1): 1131. doi: 10.1038/s41467-019-09008-0
    [79]
    GUO X D, LIU R N, HU D B, et al. Efficient all-optical plasmonic modulators with atomically thin van der waals heterostructures[J]. Advanced Materials, 2020, 32(11): 1907105. doi: 10.1002/adma.201907105
    [80]
    YANG X X, ZHAI F, HU H, et al. Far-field spectroscopy and near-field optical imaging of coupled Plasmon-phonon polaritons in 2D van der waals heterostructures[J]. Advanced Materials, 2016, 28(15): 2931-2938. doi: 10.1002/adma.201505765
    [81]
    BELOV P A, SIMOVSKI C R, IKONEN P. Canalization of subwavelength images by electromagnetic crystals[J]. Physical Review B, 2005, 71(19): 193105. doi: 10.1103/PhysRevB.71.193105
    [82]
    KRISHNAMOORTHY H N S, JACOB Z, NARIMANOV E, et al. Topological transitions in metamaterials[J]. Science, 2012, 336(6078): 205-209. doi: 10.1126/science.1219171
    [83]
    KEILMANN F, HILLENBRAND R. Near-field microscopy by elastic light scattering from a tip[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences, 2004, 362(1817): 787-805. doi: 10.1098/rsta.2003.1347
    [84]
    SHVETS G, TRENDAFILOV S, PENDRY J B, et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays[J]. Physical Review Letters, 2007, 99(5): 053903. doi: 10.1103/PhysRevLett.99.053903
    [85]
    LI ZH Y, LIN L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction[J]. Physical Review B, 2003, 68(24): 245110. doi: 10.1103/PhysRevB.68.245110
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views(1955) PDF downloads(350) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return