Citation: | SU Zhao-xian, YAO En-xu, HUANG Ling-ling, WANG Yong-tian. Optical topological characteristics of two dimensional artificial metamaterials[J]. Chinese Optics, 2021, 14(4): 955-967. doi: 10.37188/CO.2021-0074 |
[1] |
LIU Y M, ZHANG X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494-2507. doi: 10.1039/c0cs00184h
|
[2] |
MINOVICH A E, MIROSHNICHENKO A E, BYKOV A Y, et al. Functional and nonlinear optical metasurfaces[J]. Laser &Photonics Reviews, 2015, 9(2): 195-213.
|
[3] |
YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139. doi: 10.1038/nmat3839
|
[4] |
ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
|
[5] |
LEE J, TYMCHENKO M, ARGYROPOULOS C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 2014, 511(7507): 65-69. doi: 10.1038/nature13455
|
[6] |
KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
|
[7] |
LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213
|
[8] |
LU L, JOANNOPOULOS J D, SOLJAČIĆ M. Topological photonics[J]. Nature Photonics, 2014, 8(11): 821-829. doi: 10.1038/nphoton.2014.248
|
[9] |
OZAWA T, PRICE H M, AMO A, et al. Topological photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006. doi: 10.1103/RevModPhys.91.015006
|
[10] |
THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405-408. doi: 10.1103/PhysRevLett.49.405
|
[11] |
KANE C L, MELE E J. Z 2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 2005, 95(14): 146802. doi: 10.1103/PhysRevLett.95.146802
|
[12] |
KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801. doi: 10.1103/PhysRevLett.95.226801
|
[13] |
BERNEVIG B A, HUGHES T L, ZHANG SH CH. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761. doi: 10.1126/science.1133734
|
[14] |
BERNEVIG B A, ZHANG SH CH. Quantum spin Hall effect[J]. Physical Review Letters, 2006, 96(10): 106802. doi: 10.1103/PhysRevLett.96.106802
|
[15] |
HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067. doi: 10.1103/RevModPhys.82.3045
|
[16] |
QI X L, ZHANG SH CH. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110. doi: 10.1103/RevModPhys.83.1057
|
[17] |
HALDANE F D M, RAGHU S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 2008, 100(1): 013904. doi: 10.1103/PhysRevLett.100.013904
|
[18] |
HATSUGAI Y. Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 1993, 71(22): 3697-3700. doi: 10.1103/PhysRevLett.71.3697
|
[19] |
FUKUI T, HATSUGAI Y, SUZUKI H. Chern numbers in discretized brillouin zone: efficient method of computing (Spin) hall conductances[J]. Journal of the Physical Society of Japan, 2005, 74(6): 1674-1677. doi: 10.1143/JPSJ.74.1674
|
[20] |
RAGHU S, HALDANE F D M. Analogs of quantum-Hall-effect edge states in photonic crystals[J]. Physical Review A, 2008, 78(3): 033834. doi: 10.1103/PhysRevA.78.033834
|
[21] |
WANG ZH, CHONG Y D, JOANNOPOULOS J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 2009, 461(7265): 772-775. doi: 10.1038/nature08293
|
[22] |
WANG ZH, CHONG Y D, JOANNOPOULOS J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 2008, 100(1): 013905. doi: 10.1103/PhysRevLett.100.013905
|
[23] |
SKIRLO S A, LU L, SOLJAČIĆ M. Multimode one-way waveguides of large chern numbers[J]. Physical Review Letters, 2014, 113(11): 113904. doi: 10.1103/PhysRevLett.113.113904
|
[24] |
SKIRLO S A, LU L, IGARASHI Y, et al. Experimental observation of large chern numbers in photonic crystals[J]. Physical Review Letters, 2015, 115(25): 253901. doi: 10.1103/PhysRevLett.115.253901
|
[25] |
FANG CH, LU L, LIU J W, et al. Topological semimetals with helicoid surface states[J]. Nature Physics, 2016, 12(10): 936-941. doi: 10.1038/nphys3782
|
[26] |
FU L, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302. doi: 10.1103/PhysRevB.76.045302
|
[27] |
YU R, QI X L, BERNEVIG A, et al. Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection[J]. Physical Review B, 2011, 84(7): 075119. doi: 10.1103/PhysRevB.84.075119
|
[28] |
HAFEZI M, MITTAL S, FAN J, et al. Imaging topological edge states in silicon photonics[J]. Nature Photonics, 2013, 7(12): 1001-1005. doi: 10.1038/nphoton.2013.274
|
[29] |
HAFEZI M, DEMLER E A, LUKIN M D, et al. Robust optical delay lines with topological protection[J]. Nature Physics, 2011, 7(11): 907-912. doi: 10.1038/nphys2063
|
[30] |
HARARI G, BANDRES M A, LUMER Y, et al. Topological insulator laser: theory[J]. Science, 2018, 359(6381): eaar4003. doi: 10.1126/science.aar4003
|
[31] |
BANDRES M A, WITTEK S, HARARI G, et al. Topological insulator laser: experiments[J]. Science, 2018, 359(6381): eaar4005. doi: 10.1126/science.aar4005
|
[32] |
WU L H, HU X. Scheme for achieving a topological photonic crystal by using dielectric material[J]. Physical Review Letters, 2015, 114(22): 223901. doi: 10.1103/PhysRevLett.114.223901
|
[33] |
WU L H, HU X. Topological properties of electrons in honeycomb lattice with detuned hopping energy[J]. Scientific Reports, 2016, 6: 24347. doi: 10.1038/srep24347
|
[34] |
YANG Y T, XU Y F, XU T, et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials[J]. Physical Review Letters, 2018, 120(21): 217401. doi: 10.1103/PhysRevLett.120.217401
|
[35] |
ZHANG ZH W, WEI Q, CHENG Y, et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice[J]. Physical Review Letters, 2017, 118(8): 084303. doi: 10.1103/PhysRevLett.118.084303
|
[36] |
GORLACH M A, NI X, SMIRNOVA D A, et al. Far-field probing of leaky topological states in all-dielectric metasurfaces[J]. Nature Communications, 2018, 9(1): 909. doi: 10.1038/s41467-018-03330-9
|
[37] |
SHAO Z K, CHEN H ZH, WANG S, et al. A high-performance topological bulk laser based on band-inversion-induced reflection[J]. Nature Nanotechnology, 2020, 15(1): 67-72. doi: 10.1038/s41565-019-0584-x
|
[38] |
SMIRNOVA D, KRUK S, LEYKAM D, et al. Third-harmonic generation in photonic topological metasurfaces[J]. Physical Review Letters, 2019, 123(10): 103901. doi: 10.1103/PhysRevLett.123.103901
|
[39] |
PROCTOR M, CRASTER R V, MAIER S A, et al. Exciting pseudospin-dependent edge states in plasmonic metasurfaces[J]. ACS Photonics, 2019, 6(11): 2985-2995. doi: 10.1021/acsphotonics.9b01192
|
[40] |
LEE J, MAK K F, SHAN J. Electrical control of the valley Hall effect in bilayer MoS2 transistors[J]. Nature Nanotechnology, 2016, 11(5): 421-425. doi: 10.1038/nnano.2015.337
|
[41] |
MAK K F, MCGILL K L, PARK J, et al. Valleytronics. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344(6191): 1489-1492. doi: 10.1126/science.1250140
|
[42] |
SCHAIBLEY J R, YU H Y, CLARK G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016, 1(11): 16055. doi: 10.1038/natrevmats.2016.55
|
[43] |
DONG J W, CHEN X D, ZHU H Y, et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 2017, 16(3): 298-302. doi: 10.1038/nmat4807
|
[44] |
HE X T, LIANG E T, YUAN J J, et al. A silicon-on-insulator slab for topological valley transport[J]. Nature Communications, 2019, 10(1): 872. doi: 10.1038/s41467-019-08881-z
|
[45] |
YANG Y H, YAMAGAMI Y, YU X B, et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 2020, 14(7): 446-451. doi: 10.1038/s41566-020-0618-9
|
[46] |
GONG Y K, WONG S, BENNETT A J, et al. Topological insulator laser using valley-hall photonic crystals[J]. ACS Photonics, 2020, 7(8): 2089-2097. doi: 10.1021/acsphotonics.0c00521
|
[47] |
WU X X, MENG Y, TIAN J X, et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals[J]. Nature Communications, 2017, 8(1): 1304. doi: 10.1038/s41467-017-01515-2
|
[48] |
KANG Y H, NI X, CHENG X J, et al. Pseudo-spin-valley coupled edge states in a photonic topological insulator[J]. Nature Communications, 2018, 9(1): 3029. doi: 10.1038/s41467-018-05408-w
|
[49] |
GAO F, XUE H R, YANG ZH J, et al. Topologically protected refraction of robust kink states in valley photonic crystals[J]. Nature Physics, 2018, 14(2): 140-144. doi: 10.1038/nphys4304
|
[50] |
MA T, SHVETS G. All-Si valley-Hall photonic topological insulator[J]. New Journal of Physics, 2016, 18(2): 025012. doi: 10.1088/1367-2630/18/2/025012
|
[51] |
NOH J, HUANG SH, CHEN K P, et al. Observation of photonic topological valley hall edge states[J]. Physical Review Letters, 2018, 120(6): 063902. doi: 10.1103/PhysRevLett.120.063902
|
[52] |
GAO ZH, YANG ZH J, GAO F, et al. Valley surface-wave photonic crystal and its bulk/edge transport[J]. Physical Review B, 2017, 96(20): 201402. doi: 10.1103/PhysRevB.96.201402
|
[53] |
NI X, PURTSELADZE D, SMIRNOVA D A, et al. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators[J]. Science Advances, 2018, 4(5): eaap8802. doi: 10.1126/sciadv.aap8802
|
[54] |
CHEN W J, XIAO M, CHAN C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[J]. Nature Communications, 2016, 7: 13038. doi: 10.1038/ncomms13038
|
[55] |
LU L, FU L, JOANNOPOULOS J D, et al. Weyl points and line nodes in gyroid photonic crystals[J]. Nature Photonics, 2013, 7(4): 294-299. doi: 10.1038/nphoton.2013.42
|
[56] |
LI F, HUANG X Q, LU J Y, et al. Weyl points and Fermi arcs in a chiral phononic crystal[J]. Nature Physics, 2017, 14(1): 30-34.
|
[57] |
YANG Z J, ZHANG B L. Acoustic type-II weyl nodes from stacking dimerized chains[J]. Physical Review Letters, 2016, 117(22): 224301. doi: 10.1103/PhysRevLett.117.224301
|
[58] |
LU L, WANG ZH Y, YE D X, et al. Experimental observation of Weyl points[J]. Science, 2015, 349(6248): 622-624. doi: 10.1126/science.aaa9273
|
[59] |
YANG B, GUO Q H, TREMAIN B, et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures[J]. Science, 2018, 359(6379): 1013-1016. doi: 10.1126/science.aaq1221
|
[60] |
YUAN L Q, LIN Q, XIAO M, et al. Synthetic dimension in photonics[J]. Optica, 2018, 5(11): 1369-1405.
|
[61] |
JIAN CH M, XU C K. Interacting topological insulators with synthetic dimensions[J]. Physical Review X, 2018, 8(4): 041030. doi: 10.1103/PhysRevX.8.041030
|
[62] |
LI Q C, JIANG X Y. Singularity induced topological transition of different dimensions in one synthetic photonic system[J]. Optics Communications, 2019, 440: 32-40. doi: 10.1016/j.optcom.2019.02.015
|
[63] |
YUAN L Q, XIAO M, LIN Q, et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation[J]. Physical Review B, 2018, 97(10): 104105. doi: 10.1103/PhysRevB.97.104105
|
[64] |
CHALOPIN T, SATOOR T, EVRARD A, et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system[J]. Nature Physics, 2020, 16(10): 1017-1021. doi: 10.1038/s41567-020-0942-5
|
[65] |
LUO X W, ZHANG J, ZHANG CH W. Tunable flux through a synthetic Hall tube of neutral fermions[J]. Physical Review A, 2020, 102(6): 063327. doi: 10.1103/PhysRevA.102.063327
|
[66] |
WANG Q, XIAO M, LIU H, et al. Optical interface states protected by synthetic Weyl points[J]. Physical Review X, 2017, 7(3): 031032. doi: 10.1103/PhysRevX.7.031032
|
[67] |
LIN Q, XIAO M, YUAN L Q, et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension[J]. Nature Communications, 2016, 7: 13731. doi: 10.1038/ncomms13731
|
[68] |
YUAN L Q, SHI Y, FAN SH H. Photonic gauge potential in a system with a synthetic frequency dimension[J]. Optics Letters, 2016, 41(4): 741-744. doi: 10.1364/OL.41.000741
|
[69] |
LIN Q, SUN X Q, XIAO M, et al. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension[J]. Science Advances, 2018, 4(10): eaat2774. doi: 10.1126/sciadv.aat2774
|
[70] |
OZAWA T, PRICE H M, GOLDMAN N, et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics[J]. Physical Review A, 2016, 93(4): 043827. doi: 10.1103/PhysRevA.93.043827
|
[71] |
MINKOV M, SAVONA V. Haldane quantum Hall effect for light in a dynamically modulated array of resonators[J]. Optica, 2016, 3(2): 200-206. doi: 10.1364/OPTICA.3.000200
|
[72] |
MIDYA B, ZHAO H, FENG L. Non-Hermitian photonics promises exceptional topology of light[J]. Nature Communications, 2018, 9(1): 2674. doi: 10.1038/s41467-018-05175-8
|
[73] |
ZHANG L, YANG Y H, LIN ZH K, et al. Higher-order topological states in surface-wave photonic crystals[J]. Advanced Science, 2020, 7(6): 1902724. doi: 10.1002/advs.201902724
|
[74] |
BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipole insulators[J]. Science, 2017, 357(6346): 61-66. doi: 10.1126/science.aah6442
|
[75] |
SERRA-GARCIA M, PERI V, SÜSSTRUNK R, et al. Observation of a phononic quadrupole topological insulator[J]. Nature, 2018, 555(7696): 342-345. doi: 10.1038/nature25156
|
[76] |
ZHANG W X, XIE X, HAO H M, et al. Low-threshold topological nanolasers based on the second-order corner state[J]. Light:Science &Applications, 2020, 9: 109.
|
[77] |
XIE B Y, SU G X, WANG H F, et al. Higher-order quantum spin Hall effect in a photonic crystal[J]. Nature Communications, 2020, 11(1): 3768. doi: 10.1038/s41467-020-17593-8
|
[78] |
XIE B Y, WANG H F, WANG H X, et al. Second-order photonic topological insulator with corner states[J]. Physical Review B, 2018, 98(20): 205147. doi: 10.1103/PhysRevB.98.205147
|