Citation: | CAO Tun, LIU Kuan, LI Yang, LIAN Meng, HU Zi-xian, LIU Xuan, LI Gui-xin. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. doi: 10.37188/CO.2021-0080 |
[1] |
PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776. doi: 10.1103/PhysRevLett.76.4773
|
[2] |
PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
|
[3] |
FANG N, LEE H, SUN CH, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759
|
[4] |
SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628
|
[5] |
LIU R, JI C, MOCK J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369. doi: 10.1126/science.1166949
|
[6] |
MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1(3): 21.
|
[7] |
ERGIN T, STENGER N, BRENNER P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339. doi: 10.1126/science.1186351
|
[8] |
CUI T J, LI L L, LIU SH, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
|
[9] |
ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
|
[10] |
REN ZH H, CHANG Y H, MA Y M, et al. Leveraging of MEMS technologies for optical metamaterials applications[J]. Advanced Optical Materials, 2020, 8(3): 1900653. doi: 10.1002/adom.201900653
|
[11] |
CHEN H T, TAYLOR A J, YU N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401
|
[12] |
HE Q, SUN SH L, ZHOU L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 2019: 1849272.
|
[13] |
CHE Y H, WANG X T, SONG Q H, et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms[J]. Nanophotonics, 2020, 9(15): 4407-4431. doi: 10.1515/nanoph-2020-0311
|
[14] |
CUI T, BAI B F, SUN H B. Tunable metasurfaces based on active materials[J]. Advanced Functional Materials, 2019, 29(10): 1806692. doi: 10.1002/adfm.201806692
|
[15] |
CHANG Y H, WEI J X, LEE C. Metamaterials-from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049-3070. doi: 10.1515/nanoph-2020-0045
|
[16] |
MENG K, PARK S J, LI L H, et al. Tunable broadband terahertz polarizer using graphene-metal hybrid metasurface[J]. Optics Express, 2019, 27(23): 33768-33778. doi: 10.1364/OE.27.033768
|
[17] |
ZHANG J, WEI X ZH, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265-271. doi: 10.1021/acsphotonics.9b01532
|
[18] |
ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9: 812. doi: 10.1038/s41467-018-03155-6
|
[19] |
LIU X B, WANG Q, ZHANG X Q, et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175
|
[20] |
KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961-3968. doi: 10.1021/acs.nanolett.9b01246
|
[21] |
LEI D Y, APPAVOO K, LIGMAJER F, et al. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure[J]. ACS Photonics, 2015, 2(9): 1306-1313. doi: 10.1021/acsphotonics.5b00249
|
[22] |
HAIL C U, MICHEL A K U, POULIKAKOS D, et al. Optical metasurfaces: evolving from passive to adaptive[J]. Advanced Optical Materials, 2019, 7(14): 1801786. doi: 10.1002/adom.201801786
|
[23] |
ZHONG M. A multi-band metamaterial absorber based on VO2 layer[J]. Optics &Laser Technology, 2021, 139: 106930.
|
[24] |
KATS M A, SHARMA D, LIN J, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101. doi: 10.1063/1.4767646
|
[25] |
SHU F ZH, YU F F, PENG R W, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide[J]. Advanced Optical Materials, 2018, 6(7): 1700939. doi: 10.1002/adom.201700939
|
[26] |
HASHEMI M R M, YANG SH H, WANG T Y, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6: 35439. doi: 10.1038/srep35439
|
[27] |
ZHU M, COJOCARU‐MIRÉDIN O, MIO A M, et al. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding[J]. Advanced Materials, 2018, 30(18): 1706735. doi: 10.1002/adma.201706735
|
[28] |
DING F, YANG Y Q, BOZHEVOLNYI S I. Dynamic metasurfaces using phase‐change chalcogenides[J]. Advanced Optical Materials, 2019, 7(14): 1801709. doi: 10.1002/adom.201801709
|
[29] |
JEONG Y G, BAHK Y M, KIM D S. Dynamic terahertz plasmonics enabled by phase-change materials[J]. Advanced Optical Materials, 2020, 8(3): 1900548. doi: 10.1002/adom.201900548
|
[30] |
WUTTIG M, YAMADA N. Phase-change materials for rewriteable data storage[J]. Nature Materials, 2007, 6(11): 824-832. doi: 10.1038/nmat2009
|
[31] |
CAO T, WANG R Z, SIMPSON R E, et al. Photonic Ge-Sb-Te phase change metamaterials and their applications[J]. Progress in Quantum Electronics, 2020, 74: 100299. doi: 10.1016/j.pquantelec.2020.100299
|
[32] |
CAO T, ZHANG L, SIMPSON R E, et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-changing metamaterial[J]. Journal of the Optical Society of America B, 2013, 30(6): 1580-1585.
|
[33] |
GHOLIPOUR B, ZHANG J F, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 2013, 25(22): 3050-3054. doi: 10.1002/adma.201300588
|
[34] |
TITTL A, MICHEL A K U, SCHÄFERLING M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Advanced Materials, 2015, 27(31): 4597-4603. doi: 10.1002/adma.201502023
|
[35] |
QU Y R, LI Q, DU K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser &Photonics Reviews, 2017, 11(5): 1700091.
|
[36] |
BEHERA J K, LIU K, LIAN M, et al. A reconfigurable hyperbolic metamaterial perfect absorber[J]. Nanoscale Advances, 2021, 3(6): 1758-1766. doi: 10.1039/D0NA00787K
|
[37] |
CAO T, LIU K, LU L, et al. Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles[J]. ACS Applied Materials &Interfaces, 2019, 11(5): 5176-5182.
|
[38] |
JULIAN M N, WILLIAMS C, BORG S, et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 2020, 7(7): 746-754. doi: 10.1364/OPTICA.392878
|
[39] |
DE GALARRETA C R, SINEV I, ALEXEEV A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica, 2020, 7(5): 476-484. doi: 10.1364/OPTICA.384138
|
[40] |
WANG Y F, LANDREMAN P, SCHOEN D, et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology, 2021. doi: 10.1038/s41565-021-00882-8
|
[41] |
ZHANG Y F, FOWLER C, LIANG J H, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 2021. doi: 10.1038/s41565-021-00881-9
|
[42] |
HOSSEINI P, WRIGHT C D, BHASKARAN H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206-211. doi: 10.1038/nature13487
|
[43] |
YOO S, GWON T, EOM T, et al. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film[J]. ACS Photonics, 2016, 3(7): 1265-1270. doi: 10.1021/acsphotonics.6b00246
|
[44] |
DE GALARRETA C R, ALEXEEV A M, AU Y Y, et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993
|
[45] |
BAI W, YANG P, HUANG J, et al. Near-infrared tunable metalens based on phase change material Ge2Sb2Te5[J]. Scientific Reports, 2019, 9(1): 5368. doi: 10.1038/s41598-019-41859-x
|
[46] |
STAUDE I, SCHILLING J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 2017, 11(5): 274-284. doi: 10.1038/nphoton.2017.39
|
[47] |
HORIE Y, ARBABI A, ARBABI E, et al. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas[J]. ACS Photonics, 2018, 5(5): 1711-1717. doi: 10.1021/acsphotonics.7b01073
|
[48] |
RAHMANI M, XU L, MIROSHNICHENKO A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Advanced Functional Materials, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580
|
[49] |
NGUYEN Q M, ANTHONY T K, ZAGHLOUL A I. Free-Space-Impedance-Matched composite dielectric metamaterial with high refractive index[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(12): 2751-2755. doi: 10.1109/LAWP.2019.2951122
|
[50] |
CHEN X, FAN W H. Tunable bound states in the continuum in all-dielectric terahertz metasurfaces[J]. Nanomaterials, 2020, 10(4): 623. doi: 10.3390/nano10040623
|
[51] |
ZHONG M, JIANG X T, ZHU X L, et al. Design and fabrication of a single metal layer tunable metamaterial absorber in THz range[J]. Optics &Laser Technology, 2020, 125: 106023.
|
[52] |
MA Z, MENG X, LIU X, et al. Liquid crystal enabled dynamic nanodevices[J]. Nanomaterials, 2018, 8(11): 871.
|
[53] |
SI G Y, ZHAO Y H, LEONG E S P, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317. doi: 10.3390/ma7021296
|
[54] |
KOMAR A, FANG ZH, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 2017, 110(7): 071109. doi: 10.1063/1.4976504
|
[55] |
ATORF B, MÜHLENBERND H, MULDARISNUR M, et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal[J]. Optics Letters, 2014, 39(5): 1129-1132. doi: 10.1364/OL.39.001129
|
[56] |
LI SH Q, XU X W, VEETIL R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
|
[57] |
SHARMA M, HENDLER N, ELLENBOGEN T. Electrically switchable color tags based on active liquid‐crystal plasmonic metasurface platform[J]. Advanced Optical Materials, 2020, 8(7): 1901182. doi: 10.1002/adom.201901182
|
[58] |
FRANKLIN D, FRANK R, WU S T, et al. Actively addressed single pixel full-colour plasmonic display[J]. Nature Communications, 2017, 8: 15209. doi: 10.1038/ncomms15209
|
[59] |
AMER A A G, SAPUAN S Z, NASIMUDDIN N, et al. A comprehensive review of metasurface structures suitable for RF energy harvesting[J]. IEEE Access, 2020, 8: 76433-76452. doi: 10.1109/ACCESS.2020.2989516
|
[60] |
XU W R, SONKUSALE S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103(3): 031902. doi: 10.1063/1.4813750
|
[61] |
ZHANG L, CHEN X Q, LIU SH, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
|
[62] |
CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science &Applications, 2014, 3(10): e218.
|
[63] |
LI L L, SHUANG Y, MA Q, et al. Intelligent metasurface imager and recognizer[J]. Light:Science &Applications, 2019, 8: 97.
|
[64] |
LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
|
[65] |
HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319-5325. doi: 10.1021/acs.nanolett.6b00555
|
[66] |
SHIRMANESH G K, SOKHOYAN R, PALA R A, et al. Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability[J]. Nano Letters, 2018, 18(5): 2957-2963. doi: 10.1021/acs.nanolett.8b00351
|
[67] |
FOROUZMAND A, SALARY M M, INAMPUDI S, et al. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 2018, 6(7): 1701275. doi: 10.1002/adom.201701275
|
[68] |
PARK J, JEONG B G, KIM S I, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 2021, 16(1): 69-76. doi: 10.1038/s41565-020-00787-y
|
[69] |
WANG F, ZHANG Y B, TIAN CH SH, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209. doi: 10.1126/science.1152793
|
[70] |
LI Z Q, HENRIKSEN E A, JIANG Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532-535. doi: 10.1038/nphys989
|
[71] |
YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 2014, 14(11): 6526-6532. doi: 10.1021/nl503104n
|
[72] |
BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622. doi: 10.1038/nphoton.2010.186
|
[73] |
SHERROTT M C, HON P W C, FOUNTAINE K T, et al. Experimental demonstration of > 230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5): 3027-3034. doi: 10.1021/acs.nanolett.7b00359
|
[74] |
FAN K B, SUEN J, WU X Y, et al. Graphene metamaterial modulator for free-space thermal radiation[J]. Optics Express, 2016, 24(22): 25189-25201. doi: 10.1364/OE.24.025189
|
[75] |
ZENG B B, HUANG ZH Q, SINGH A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light:Science &Applications, 2018, 7: 51.
|
[76] |
DABIDIAN N, DUTTA-GUPTA S, KHOLMANOV I, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters, 2016, 16(6): 3607-3615. doi: 10.1021/acs.nanolett.6b00732
|
[77] |
CAI H L, HUANG Q P, HU X, et al. All‐optical and ultrafast tuning of terahertz plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(14): 1800143. doi: 10.1002/adom.201800143
|
[78] |
GU J Q, SINGH R, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151. doi: 10.1038/ncomms2153
|
[79] |
YANG Y M, KAMARAJU N, CAMPIONE S, et al. Transient GaAs plasmonic metasurfaces at terahertz frequencies[J]. ACS Photonics, 2017, 4(1): 15-21. doi: 10.1021/acsphotonics.6b00735
|
[80] |
SHCHERBAKOV M R, LIU SH, ZUBYUK V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nature Communications, 2017, 8: 17. doi: 10.1038/s41467-017-00019-3
|
[81] |
YANG Y M, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390-395. doi: 10.1038/nphoton.2017.64
|
[82] |
CHANANA A, LIU X J, ZHANG CH, et al. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites[J]. Science Advances, 2018, 4(5): eaar7353. doi: 10.1126/sciadv.aar7353
|
[83] |
MANJAPPA M, SRIVASTAVA Y K, SOLANKI A, et al. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices[J]. Advanced Materials, 2017, 29(32): 1605881. doi: 10.1002/adma.201605881
|
[84] |
KUMAR A, SOLANKI A, MANJAPPA M, et al. Excitons in 2D perovskites for ultrafast terahertz photonic devices[J]. Science Advances, 2020, 6(8): eaax8821. doi: 10.1126/sciadv.aax8821
|
[85] |
BELOTELOV V I, KREILKAMP L E, AKIMOV I A, et al. Plasmon-mediated magneto-optical transparency[J]. Nature Communications, 2013, 4: 2128. doi: 10.1038/ncomms3128
|
[86] |
TAN ZH Y, FAN F, LI T F, et al. Magnetically active terahertz wavefront control and superchiral field in a magneto-optical Pancharatnam-Berry metasurface[J]. Optics Express, 2021, 29(2): 2037-2048. doi: 10.1364/OE.414004
|
[87] |
QIN J, DENG L J, KANG T T, et al. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields[J]. ACS Nano, 2020, 14(3): 2808-2816. doi: 10.1021/acsnano.9b05062
|
[88] |
ZUBRITSKAYA I, MACCAFERRI N, EZEIZA X I, et al. Magnetic control of the chiroptical plasmonic surfaces[J]. Nano Letters, 2018, 18(1): 302-307. doi: 10.1021/acs.nanolett.7b04139
|
[89] |
GUTRUF P, ZOU CH J, WITHAYACHUMNANKUL W, et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies[J]. ACS Nano, 2016, 10(1): 133-141. doi: 10.1021/acsnano.5b05954
|
[90] |
TSENG M L, YANG J, SEMMLINGER M, et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J]. Nano Letters, 2017, 17(10): 6034-6039. doi: 10.1021/acs.nanolett.7b02350
|
[91] |
YOO D, JOHNSON T W, CHERUKULAPPURATH S, et al. Template-stripped tunable plasmonic devices on stretchable and rollable substrates[J]. ACS Nano, 2015, 9(11): 10647-10654. doi: 10.1021/acsnano.5b05279
|
[92] |
MORITS D, MORITS M, OVCHINNIKOV V, et al. Multifunctional stretchable metasurface for the THz range[J]. Journal of Optics, 2014, 16(3): 032001. doi: 10.1088/2040-8978/16/3/032001
|
[93] |
MALEK S C, EE H S, AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641-3645. doi: 10.1021/acs.nanolett.7b00807
|
[94] |
KAMALI S M, ARBABI A, ARBABI E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7: 11618. doi: 10.1038/ncomms11618
|
[95] |
SONG SH CH, MA X L, PU M B, et al. Actively tunable structural color rendering with tensile substrate[J]. Advanced Optical Materials, 2017, 5(9): 1600829. doi: 10.1002/adom.201600829
|
[96] |
ZHANG CH, JING J X, WU Y K, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418-1426. doi: 10.1021/acsnano.9b08228
|
[97] |
HUANG F M, BAUMBERG J J. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers[J]. Nano Letters, 2010, 10(5): 1787-1792. doi: 10.1021/nl1004114
|
[98] |
CHEN W X, LIU W J, JIANG Y J, et al. Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification[J]. ACS Nano, 2018, 12(11): 10683-10692. doi: 10.1021/acsnano.8b04889
|
[99] |
PRYCE I M, AYDIN K, KELAITA Y A, et al. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters, 2010, 10(10): 4222-4227. doi: 10.1021/nl102684x
|
[100] |
LIU X, HUANG ZH, ZHU CH K, et al. Out-of-plane designed soft metasurface for tunable surface plasmon polariton[J]. Nano Letters, 2018, 18(2): 1435-1441. doi: 10.1021/acs.nanolett.7b05190
|
[101] |
GAO Y SH, FAN Y B, WANG Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061. doi: 10.1021/acs.nanolett.8b04311
|
[102] |
WAN W W, GAO J, YANG X D. Metasurface holograms for holographic imaging[J]. Advanced Optical Materials, 2017, 5(21): 1700541. doi: 10.1002/adom.201700541
|
[103] |
KAMALI S M, ARBABI E, ARBABI A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser &Photonics Reviews, 2016, 10(6): 1002-1008.
|
[104] |
SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
|
[105] |
OPRIS D M. Polar elastomers as novel materials for electromechanical actuator applications[J]. Advanced Materials, 2018, 30(5): 1703678. doi: 10.1002/adma.201703678
|
[106] |
SKOV A L, YU L Y. Optimization techniques for improving the performance of silicone‐based dielectric elastomers[J]. Advanced Engineering Materials, 2018, 20(5): 1700762. doi: 10.1002/adem.201700762
|
[107] |
SHAH S I H, SARKAR A, PHON R, et al. Two‐dimensional electromechanically transformable metasurface with beam scanning capability using four independently controllable shape memory alloy axes[J]. Advanced Optical Materials, 2020, 8(22): 2001180. doi: 10.1002/adom.202001180
|
[108] |
ROY T, ZHANG SH Y, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865
|
[109] |
LIU X L, PADILLA W J. Dynamic manipulation of infrared radiation with MEMS metamaterials[J]. Advanced Optical Materials, 2013, 1(8): 559-562. doi: 10.1002/adom.201300163
|
[110] |
FU Y H, LIU A Q, ZHU W M, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split‐ring resonators[J]. Advanced Functional Materials, 2011, 21(18): 3589-3594. doi: 10.1002/adfm.201101087
|
[111] |
HU F R, QIAN Y X, LI ZH, et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics, 2013, 15(5): 055101. doi: 10.1088/2040-8978/15/5/055101
|
[112] |
KAN T, ISOZAKI A, KANDA N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communications, 2015, 6: 8422.
|
[113] |
ZHU W M, LIU A Q, ZHANG X M, et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials, 2011, 23(15): 1792-1796. doi: 10.1002/adma.201004341
|
[114] |
REEVES J B, JAYNE R K, STARK T J, et al. Tunable infrared metasurface on a soft polymer scaffold[J]. Nano Letters, 2018, 18(5): 2802-2806. doi: 10.1021/acs.nanolett.7b05042
|
[115] |
ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 2018, 5(3): 303-310. doi: 10.1364/OPTICA.5.000303
|
[116] |
NAIK G V, SCHROEDER J L, NI X J, et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths[J]. Optical Materials Express, 2012, 2(4): 478-489. doi: 10.1364/OME.2.000478
|
[117] |
BANG S, KIM J, YOON G, et al. Recent advances in tunable and reconfigurable metamaterials[J]. Micromachines, 2018, 9(11): 560. doi: 10.3390/mi9110560
|
[118] |
KANG L, JENKINS R P, WERNER D H. Recent progress in active optical metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801813. doi: 10.1002/adom.201801813
|
[119] |
ZHANG X G, JIANG W X, JIANG H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165-171. doi: 10.1038/s41928-020-0380-5
|