Citation: | FAN Zhi-bin, CHEN Ze-ming, ZHOU Xin, HE Xin-tao, JIANG Shao-ji, DONG Jian-wen. Recent advances in silicon nitride-based photonic devices and applications[J]. Chinese Optics, 2021, 14(4): 998-1018. doi: 10.37188/CO.2021-0093 |
[1] |
王正军. 氮化硅陶瓷的研究进展[J]. 材料科学与工艺,2009,17(2):155-158.
WANG ZH J. Research progress of silicon nitride ceramic[J]. Materials Science &Technology, 2009, 17(2): 155-158. (in Chinese)
|
[2] |
LANGE H, WÖTTING G, WINTER G. Silicon nitride—from powder synthesis to ceramic materials[J]. Angewandte Chemie International Edition in English, 1991, 30(12): 1579-1597. doi: 10.1002/anie.199115791
|
[3] |
DANTE R C, KAJDAS C K. A review and a fundamental theory of silicon nitride tribochemistry[J]. Wear, 2012, 288: 27-38. doi: 10.1016/j.wear.2012.03.001
|
[4] |
KALOYEROS A E, JOVÉ F A, GOFF J, et al. Review—silicon nitride and silicon nitride-rich thin film technologies: trends in deposition techniques and related applications[J]. ECS Journal of Solid State Science and Technology, 2017, 6(10): P691-P714. doi: 10.1149/2.0011710jss
|
[5] |
BALÁZSI C, KÓNYA Z, WÉBER F, et al. Preparation and characterization of carbon nanotube reinforced silicon nitride composites[J]. Materials Science and Engineering:C, 2003, 23(6-8): 1133-1137. doi: 10.1016/j.msec.2003.09.085
|
[6] |
ŠAJGALIK P, DUSZA J, HOFFMANN M J. Relationship between microstructure, toughening mechanisms, and fracture toughness of reinforced silicon nitride ceramics[J]. Journal of the American Ceramic Society, 1995, 78(10): 2619-2624. doi: 10.1111/j.1151-2916.1995.tb08031.x
|
[7] |
SCHMIDT S, HÄNNINEN T, GOYENOLA C, et al. SiNx coatings deposited by reactive high power impulse magnetron sputtering: process parameters influencing the nitrogen content[J]. ACS Applied Materials &Interfaces, 2016, 8(31): 20385-20395.
|
[8] |
邢武超. 高导热氮化硅陶瓷的低温制备及性能研究[D]. 郑州: 郑州航空工业管理学院, 2020.
XING W CH. Study on low temperature preparation and properties of Silicon Nitride ceramics with high thermal conductivity[D]. Zhengzhou: Zhengzhou University of Aeronautics, 2020. (in Chinese)
|
[9] |
RAIDER S I, FLITSCH R, ABOAF J A, et al. Surface oxidation of silicon nitride films[J]. Journal of the Electrochemical Society, 1976, 123(4): 560-565. doi: 10.1149/1.2132877
|
[10] |
LUBE T, DUSZA J. A silicon nitride reference material—A testing program of ESIS TC6[J]. Journal of the European Ceramic Society, 2007, 27(2-3): 1203-1209. doi: 10.1016/j.jeurceramsoc.2006.04.020
|
[11] |
MUÑOZ P, MICÓ G, BRU L A, et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications[J]. Sensors, 2017, 17(9): 2088. doi: 10.3390/s17092088
|
[12] |
FAN ZH B, SHAO Z K, XIE M Y, et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 2018, 10(1): 014005. doi: 10.1103/PhysRevApplied.10.014005
|
[13] |
YE M, PENG Y H, YI Y SH. Silicon-rich silicon nitride thin films for subwavelength grating metalens[J]. Optical Materials Express, 2019, 9(3): 1200-1207. doi: 10.1364/OME.9.001200
|
[14] |
TAN D T H, OOI K J A, NG D K T. Nonlinear optics on silicon-rich nitride-a high nonlinear figure of merit CMOS platform [Invited][J]. Photonics Research, 2018, 6(5): B50-B66. doi: 10.1364/PRJ.6.000B50
|
[15] |
DAI J P, GAO W, LIU B, et al. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed bragg reflectors[J]. Applied Surface Science, 2016, 364: 886-891. doi: 10.1016/j.apsusc.2015.12.222
|
[16] |
LI J D, SHEN G S, CHEN W L, et al. Preparation of SiNx multilayer films by mid-frequency magnetron sputtering for crystalline silicon solar cells[J]. Materials Science in Semiconductor Processing, 2017, 59: 40-44. doi: 10.1016/j.mssp.2016.11.039
|
[17] |
SOMAN A, ANTONY A. Broad range refractive index engineering of SixNy and SiOxNy thin films and exploring their potential applications in crystalline silicon solar cells[J]. Materials Chemistry and Physics, 2017, 197: 181-191. doi: 10.1016/j.matchemphys.2017.05.035
|
[18] |
SOMAN A, ANTONY A. Tuneable and spectrally selective broadband reflector – Modulated photonic crystals and its application in solar cells[J]. Solar Energy, 2018, 162: 525-532. doi: 10.1016/j.solener.2018.01.061
|
[19] |
SOMAN A, ANTONY A. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics[J]. Solar Energy, 2019, 181: 1-8. doi: 10.1016/j.solener.2019.01.058
|
[20] |
ZHAN A L, COLBURN S, TRIVEDI R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 2016, 3(2): 209-214. doi: 10.1021/acsphotonics.5b00660
|
[21] |
ZHAO W, LI X Y, LI S Q, et al. Sub-wavelength focusing based on all-dielectric polarization-independent metalens[J]. International Journal of Modern Physics B, 2018, 32(29): 1850321. doi: 10.1142/S0217979218503216
|
[22] |
PARK J W, BAE S I, JEONG K H. Silicon nitride metalens for optical imaging[C]. 2018 International Conference on Optical MEMS and Nanophotonics (OMN), IEEE, 2018: 1-5.
|
[23] |
YE M, RAY V, PENG Y H, et al. Linear polarization distinguishing metalens in visible wavelength[J]. Optics Letters, 2019, 44(2): 399-402. doi: 10.1364/OL.44.000399
|
[24] |
COLBURN S, ZHAN A L, MAJUMDAR A. Metasurface optics for full-color computational imaging[J]. Science Advances, 2018, 4(2): eaar2114. doi: 10.1126/sciadv.aar2114
|
[25] |
COLBURN S, MAJUMDAR A. Simultaneous achromatic and varifocal imaging with quartic metasurfaces in the visible[J]. ACS Photonics, 2020, 7(1): 120-127. doi: 10.1021/acsphotonics.9b01216
|
[26] |
FAN ZH B, QIU H Y, ZHANG H L, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light:Science &Applications, 2019, 8: 67.
|
[27] |
HUO Z H, PANG X N, WANG H, et al. Engineering the chromatic dispersion in dual-wavelength metalenses for unpolarized visible light[J]. Proceedings of SPIE, 2019, 11170: 111702H.
|
[28] |
LIU Y, YU Q Y, CHEN Z M, et al. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 106-115. doi: 10.1364/PRJ.406197
|
[29] |
ZHAO M X, CHEN M K, ZHUANG Z P, et al. Phase characterisation of metalenses[J]. Light:Science &Applications, 2021, 10(1): 52.
|
[30] |
BAYATI E, PESTOURIE R, COLBURN S, et al. Inverse designed metalenses with extended depth of focus[J]. ACS Photonics, 2020, 7(4): 873-878. doi: 10.1021/acsphotonics.9b01703
|
[31] |
HUANG L CH, WHITEHEAD J, COLBURN S, et al. Design and analysis of extended depth of focus metalenses for achromatic computational imaging[J]. Photonics Research, 2020, 8(10): 1613-1623. doi: 10.1364/PRJ.396839
|
[32] |
ZHAN A L, COLBURN S, DODSON C M, et al. Metasurface freeform nanophotonics[J]. Scientific Reports, 2017, 7(1): 1673. doi: 10.1038/s41598-017-01908-9
|
[33] |
COLBURN S, ZHAN A L, MAJUMDAR A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 2018, 5(7): 825-831. doi: 10.1364/OPTICA.5.000825
|
[34] |
HAN ZH Y, COLBURN S, MAJUMDAR A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems &Nanoengineering, 2020, 6(1): 79.
|
[35] |
MIYATA M, NAKAJIMA M, HASHIMOTO T. Compound-eye metasurface optics enabling a high-sensitivity, ultra-thin polarization camera[J]. Optics Express, 2020, 28(7): 9996-10014. doi: 10.1364/OE.389591
|
[36] |
KANWAL S, WEN J, YU B B, et al. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum[J]. Nanomaterials, 2020, 10(3): 490. doi: 10.3390/nano10030490
|
[37] |
MIYATA M, NAKAJIMA M, HASHIMOTO T. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces[J]. ACS Photonics, 2019, 6(6): 1442-1450. doi: 10.1021/acsphotonics.9b00042
|
[38] |
WU SH L, YE Y, DUAN H G, et al. Large-area, optical variable-color metasurfaces based on pixelated plasmonic nanogratings[J]. Advanced Optical Materials, 2019, 7(7): 1801302. doi: 10.1002/adom.201801302
|
[39] |
PARK C S, KOIRALA I, GAO S, et al. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks[J]. Optics Express, 2019, 27(2): 667-679. doi: 10.1364/OE.27.000667
|
[40] |
GONZÁLEZ-ALCALDE A K, SALAS-MONTIEL R, KALT V, et al. Engineering colors in all-dielectric metasurfaces: metamodeling approach[J]. Optics Letters, 2020, 45(1): 89-92. doi: 10.1364/OL.45.000089
|
[41] |
YANG J H, BABICHEVA V E, YU M W, et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces[J]. ACS Nano, 2020, 14(5): 5678-5685. doi: 10.1021/acsnano.0c00185
|
[42] |
HONG Y F, LEI Y F, FANG X M, et al. All-dielectric high saturation structural colors with Si3N4 metasurface[J]. Modern Physics Letters B, 2020, 34(14): 2050142. doi: 10.1142/S0217984920501420
|
[43] |
ÜSTÜN K, TURHAN-SAYAN G. Wideband long wave infrared metamaterial absorbers based on silicon nitride[J]. Journal of Applied Physics, 2016, 120(20): 203101. doi: 10.1063/1.4968014
|
[44] |
JANG M, HORIE Y, SHIBUKAWA A, et al. Wavefront shaping with disorder-engineered metasurfaces[J]. Nature Photonics, 2018, 12(2): 84-90. doi: 10.1038/s41566-017-0078-z
|
[45] |
FLANNERY J, AL MARUF R, YOON T, et al. Fabry-pérot cavity formed with dielectric metasurfaces in a hollow-core fiber[J]. ACS Photonics, 2018, 5(2): 337-341. doi: 10.1021/acsphotonics.7b01154
|
[46] |
KARVOUNIS A, ASPIOTIS N, ZEIMPEKIS I, et al. Mechanochromic reconfigurable metasurfaces[J]. Advanced Science, 2019, 6(21): 1900974. doi: 10.1002/advs.201900974
|
[47] |
WANG J G, SHAO Z K, WEN Y H, et al. All-dielectric metasurface grating for on-chip multi-channel orbital angular momentum generation and detection[J]. Optics Express, 2019, 27(13): 18794-18802. doi: 10.1364/OE.27.018794
|
[48] |
CHEN R J, CHEN Y J, WEN Y H, et al.. Generating helical beams based on silicon-rich nitride metasurface[C]. Asia Communications and Photonics Conference (ACPC) 2019, OSA, 2019: M4A. 307.
|
[49] |
YE M, RAY V, WU D CH, et al. Metalens with artificial focus pattern[J]. IEEE Photonics Technology Letters, 2020, 32(5): 251-254. doi: 10.1109/LPT.2020.2970507
|
[50] |
CHEN Y Y, MIAO SH N, WANG T M, et al. Metasurface integrated monolayer exciton polariton[J]. Nano Letters, 2020, 20(7): 5292-5300. doi: 10.1021/acs.nanolett.0c01624
|
[51] |
LIN W, WEN Y H, CHEN Y J, et al.. Generation of accelerating beams with autofocusing properties using dielectric metasurface for polarization control[C]. 2019 Asia Communications and Photonics Conference (ACPC), OSA, 2019: M4B.7.
|
[52] |
BERESNA M, GHOLIPOUR B, LEE T, et al.. Femtosecond laser assisted fabrication of visible wavelength all-dielectric nano-membrane metasurfaces[C]. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2019: 1.
|
[53] |
ZHU L Q, YUAN SH, ZENG CH, et al.. Photoluminescence enhancement of MoS2 via dielectric metasurface[C]. 2019 International Conference on Optical MEMS and Nanophotonics (OMN), IEEE, 2019: 44-45.
|
[54] |
ROMANO S, ZITO G, PENZO E, et al. Enhancing light-matter interaction in all-dielectric photonic crystal metasurfaces[J]. Proceedings of SPIE, 2019, 11028: 110280I.
|
[55] |
MENON S, PROSAD A, BISWAS R, et al. Silicon nitride based guided mode resonance structures for enhancement of nonlinear optical effects[J]. Proceedings of SPIE, 2020, 11345: 113451J.
|
[56] |
YIN X F, JIN J CH, SOLJAČIĆ M, et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 2020, 580(7804): 467-471. doi: 10.1038/s41586-020-2181-4
|
[57] |
MAIRE G, VIVIEN L, SATTLER G, et al. High efficiency silicon nitride surface grating couplers[J]. Optics Express, 2008, 16(1): 328-333. doi: 10.1364/OE.16.000328
|
[58] |
DOERR C R, CHEN L, CHEN Y K, et al. Wide bandwidth silicon nitride grating coupler[J]. IEEE Photonics Technology Letters, 2010, 22(19): 1461-1463. doi: 10.1109/LPT.2010.2062497
|
[59] |
ROMERO-GARCÍA S, MERGET F, ZHONG F, et al. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths[J]. Optics Express, 2013, 21(12): 14036-14046. doi: 10.1364/OE.21.014036
|
[60] |
ZHANG H J, LI CH, TU X G, et al. High efficiency silicon nitride grating coupler[J]. Applied Physics A, 2014, 115(1): 79-82. doi: 10.1007/s00339-013-7954-2
|
[61] |
ZHAO X J, LI D P, ZENG CH, et al. Compact grating coupler for 700-nm silicon nitride strip waveguides[J]. Journal of Lightwave Technology, 2016, 34(4): 1322-1327. doi: 10.1109/JLT.2015.2510025
|
[62] |
LITVIK J, DOLNAK I, DADO M. Waveguide silicon nitride grating coupler[J]. Proceedings of SPIE, 2016, 10142: 1014213.
|
[63] |
CHEN Y, HALIR R, MOLINA-FERNÁNDEZ Í, et al. High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides[J]. Optics Letters, 2016, 41(21): 5059-5062. doi: 10.1364/OL.41.005059
|
[64] |
CHEN Y, DOMÍNGUEZ BUCIO T, KHOKHAR A Z, et al. Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides[J]. Optics Letters, 2017, 42(18): 3566-3569. doi: 10.1364/OL.42.003566
|
[65] |
SUBRAMANIAN A Z, SELVARAJA S, VERHEYEN P, et al. Near-infrared grating couplers for silicon nitride photonic wires[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1700-1703. doi: 10.1109/LPT.2012.2212881
|
[66] |
URA S, MORI K, TSUJIMOTO R, et al.. Position dependence of coupling efficiency of grating coupler in waveguide cavity[C]. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE, 2017: 1619-1626.
|
[67] |
DWIVEDI S, SONG B W, LIU Y, et al.. Demonstration of compact silicon nitride grating coupler arrays for fan-out of multicore fibers[C]. 2017 Conference on Lasers and Electro-Optics (CLEO), OSA, 2017: ATh3B. 4.
|
[68] |
NAMBIAR S, HEMALATHA M, SHARMA T, et al.. Integrated silicon nitride based TE dual-band grating coupler[C]. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2017: 1.
|
[69] |
WANG SH L, HAO R. High performance apodized grating coupler for 700nm Si3N4 waveguides[C]. 2016 15th International Conference on Optical Communications and Networks (ICOCN), IEEE, 2016: 1-3.
|
[70] |
ZHANG H J, LI CH, TU X G, et al. Efficient silicon nitride grating coupler with distributed Bragg reflectors[J]. Optics Express, 2014, 22(18): 21800-21805. doi: 10.1364/OE.22.021800
|
[71] |
ZOU J H, YU Y, YE M Y, et al. Ultra efficient silicon nitride grating coupler with bottom grating reflector[J]. Optics Express, 2015, 23(20): 26305-26312. doi: 10.1364/OE.23.026305
|
[72] |
HONG J X, YOKOYAMA S. Efficient silicon nitride grating coupler with a dielectric multilayer reflector[C]. 2017 22nd Microoptics Conference (MOC), IEEE, 2017: 58-59.
|
[73] |
张赞允, 朱华, 李鸿强. 高效率低向上反射的氮化硅光栅耦合器[J]. 聊城大学学报(自然科学版),2018,31(4):31-36.
ZHANG Z Y, ZHU H, LI H Q. High efficiency and low upward reflection silicon nitride grating coupler[J]. Journal of Liaocheng University (Natural Science)
|
[74] |
NAMBIAR S, KUMAR A, KALLEGA R, et al. High-efficiency grating coupler in 400 nm and 500 nm PECVD silicon nitride with bottom reflector[J]. IEEE Photonics Journal, 2019, 11(5): 2201213.
|
[75] |
ROMERO-GARCÍA S, MERGET F, ZHONG F, et al. Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector[J]. Optics Letters, 2013, 38(14): 2521-2523. doi: 10.1364/OL.38.002521
|
[76] |
SACHER W D, HUANG Y, DING L, et al. Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler[J]. Optics Express, 2014, 22(9): 10938-10947. doi: 10.1364/OE.22.010938
|
[77] |
XU P F, ZHANG Y F, SHAO Z K, et al. High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity[J]. Optics Letters, 2017, 42(17): 3391-3394. doi: 10.1364/OL.42.003391
|
[78] |
ONG E W, FAHRENKOPF N M, COOLBAUGH D D. SiNx bilayer grating coupler for photonic systems[J]. OSA Continuum, 2018, 1(1): 13-25. doi: 10.1364/OSAC.1.000013
|
[79] |
ROELOFFZEN C G H, HOEKMAN M, KLEIN E J, et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 4400321.
|
[80] |
BLUMENTHAL D J, HEIDEMAN R, GEUZEBROEK D, et al. Silicon nitride in silicon photonics[J]. Proceedings of the IEEE, 2018, 106(12): 2209-2231. doi: 10.1109/JPROC.2018.2861576
|
[81] |
PORCEL M A G, HINOJOSA A, JANS H, et al. [INVITED] Silicon nitride photonic integration for visible light applications[J]. Optics &Laser Technology, 2019, 112: 299-306.
|
[82] |
MOSS D J, MORANDOTTI R, GAETA A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics[J]. Nature Photonics, 2013, 7(8): 597-607. doi: 10.1038/nphoton.2013.183
|
[83] |
ROELOFFZEN C G H, ZHUANG L M, TADDEI C, et al. Silicon nitride microwave photonic circuits[J]. Optics Express, 2013, 21(19): 22937-22961. doi: 10.1364/OE.21.022937
|
[84] |
BOYD J T, KUO C S. Composite prism-grating coupler for coupling light into high refractive index thin-film waveguides[J]. Applied Optics, 1976, 15(7): 1681-1683. doi: 10.1364/AO.15.1681_1
|
[85] |
STUTIUS W, STREIFER W. Silicon nitride films on silicon for optical waveguides[J]. Applied Optics, 1977, 16(12): 3218-3222. doi: 10.1364/AO.16.003218
|
[86] |
BOYD J T, WU R W, ZELMON D E, et al. Planar and channel optical waveguides utilizing silicon technology[J]. Proceedings of SPIE, 1985, 517: 100-105. doi: 10.1117/12.945144
|
[87] |
HENRY C H, KAZARINOV R F, LEE H J, et al. Low loss Si3N4-SiO2 optical waveguides on Si[J]. Applied Optics, 1987, 26(13): 2621-2624. doi: 10.1364/AO.26.002621
|
[88] |
JI X CH, BARBOSA F A S, ROBERTS S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 2017, 4(6): 619-624. doi: 10.1364/OPTICA.4.000619
|
[89] |
BIBERMAN A, SHAW M J, TIMURDOGAN E, et al.. Ultralow-loss silicon ring resonators[C]. IEEE 9th International Conference on Group IV Photonics, IEEE, 2012: 39-41.
|
[90] |
KOBAYASHI N, SATO K, NAMIWAKA M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J]. Journal of Lightwave Technology, 2015, 33(6): 1241-1246. doi: 10.1109/JLT.2014.2385106
|
[91] |
HERR T, HARTINGER K, RIEMENSBERGER J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 2012, 6(7): 480-487. doi: 10.1038/nphoton.2012.127
|
[92] |
EPPING J P, HELLWIG T, HOEKMAN M, et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth[J]. Optics Express, 2015, 23(15): 19596-19604. doi: 10.1364/OE.23.019596
|
[93] |
LI Q, DAVANÇO M, SRINIVASAN K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics[J]. Nature Photonics, 2016, 10(6): 406-414. doi: 10.1038/nphoton.2016.64
|
[94] |
NG D K T, WANG Q, WANG T, et al. exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides[J]. ACS Applied Materials &Interfaces, 2015, 7(39): 21884-21889.
|
[95] |
KRÜCKEL C J, FÜLÖP A, YE ZH CH, et al. Optical bandgap engineering in nonlinear silicon nitride waveguides[J]. Optics Express, 2017, 25(13): 15370-15380. doi: 10.1364/OE.25.015370
|
[96] |
KRÜCKEL C J, FÜLÖP A, KLINTBERG T, et al. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides[J]. Optics Express, 2015, 23(20): 25827-25837. doi: 10.1364/OE.23.025827
|
[97] |
OOI K J A, NG D K T, WANG T, et al. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge[J]. Nature Communications, 2017, 8: 13878. doi: 10.1038/ncomms13878
|
[98] |
LAMY M, FINOT C, PARRIAUX A, et al. Si-rich Si nitride waveguides for optical transmissions and toward wavelength conversion around 2 μm[J]. Applied Optics, 2019, 58(19): 5165-5169. doi: 10.1364/AO.58.005165
|
[99] |
LACAVA C, DOMINGUEZ BUCIO T, KHOKHAR A Z, et al. Intermodal frequency generation in silicon-rich silicon nitride waveguides[J]. Photonics Research, 2019, 7(6): 615-621. doi: 10.1364/PRJ.7.000615
|
[100] |
DEBNATH K, BUCIO T D, AL-ATTILI A, et al. Photonic crystal waveguides on silicon rich nitride platform[J]. Optics Express, 2017, 25(4): 3214-3221. doi: 10.1364/OE.25.003214
|
[101] |
SAHIN E, NG D K T, TAN D T H. Optical parametric gain in CMOS-compatible sub-100 μm photonic crystal waveguides[J]. APL Photonics, 2020, 5(6): 066108. doi: 10.1063/5.0003633
|
[102] |
LIN G R, SU SH P, WU C L, et al. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s[J]. Scientific Reports, 2015, 5: 9611. doi: 10.1038/srep09611
|
[103] |
CLEMENTI M, DEBNATH K, SOTTO M, et al. Cavity-enhanced harmonic generation in silicon rich nitride photonic crystal microresonators[J]. Applied Physics Letters, 2019, 114(13): 131103. doi: 10.1063/1.5066996
|
[104] |
WANG T, NG D K T, NG S K, et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides[J]. Laser &Photonics Reviews, 2015, 9(5): 498-506.
|
[105] |
CHOI J W, CHEN G F R, NG D K T, et al. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides[J]. Scientific Reports, 2016, 6: 27120. doi: 10.1038/srep27120
|
[106] |
LIU X, PU M H, ZHOU B B, et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide[J]. Optics Letters, 2016, 41(12): 2719-2722. doi: 10.1364/OL.41.002719
|
[107] |
YE ZH CH, FÜLÖP A, HELGASON Ó B, et al. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics[J]. Optics Letters, 2019, 44(13): 3326-3329. doi: 10.1364/OL.44.003326
|