Citation: | YOU Ou-bo, GAO Wen-long, LIU Ya-chao, XIANG Yuan-jiang, ZHANG Shuang. Diverse surface waves supported by bianisotropic meta surfaces[J]. Chinese Optics, 2021, 14(4): 782-791. doi: 10.37188/CO.2021-0098 |
[1] |
ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3-4): 131-314. doi: 10.1016/j.physrep.2004.11.001
|
[2] |
BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi: 10.1038/nature01937
|
[3] |
PENDRY J B, MARTIN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848. doi: 10.1126/science.1098999
|
[4] |
HIBBINS A P, EVANS B R, SAMBLES J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722): 670-672. doi: 10.1126/science.1109043
|
[5] |
GAN Q Q, FU ZH, DING Y J, et al. Ultrawide-band width slow-light system based on THz plasmonic graded metallic grating structures[J]. Physical Review Letters, 2008, 100(25): 256803. doi: 10.1103/PhysRevLett.100.256803
|
[6] |
GAN Q Q, DING Y J, BARTOLI F J. “Rainbow” trapping and releasing at telecommunication wavelengths[J]. Physical Review Letters, 2009, 102(5): 056801. doi: 10.1103/PhysRevLett.102.056801
|
[7] |
MAIER S A, ANDREWS S R, MARTÍN-MORENO L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17): 176805. doi: 10.1103/PhysRevLett.97.176805
|
[8] |
ZHANG Y, XU Y H, TIAN CH X, et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide[J]. Photonics Research, 2018, 6(1): 18-23. doi: 10.1364/PRJ.6.000018
|
[9] |
XU W D, XIE L J, YING Y B. Mechanisms and applications of terahertz metamaterial sensing: a review[J]. Nanoscale, 2017, 9(37): 13864-13878. doi: 10.1039/C7NR03824K
|
[10] |
SHALTOUT A M, SHALAEV V M, BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
|
[11] |
ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9(1): 76.
|
[12] |
SUN SH L, HE Q, XIAO SH Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292
|
[13] |
NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686
|
[14] |
HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j
|
[15] |
GENEVET P, CAPASSO F, AIETA F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. doi: 10.1364/OPTICA.4.000139
|
[16] |
MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
|
[17] |
DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.201400584
|
[18] |
LIU L X, ZHANG X Q, KENNEY M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484
|
[19] |
GAO Y SH, FAN Y B, WANG Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061. doi: 10.1021/acs.nanolett.8b04311
|
[20] |
LI G X, CHEN SH M, PHOLCHAI N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 2015, 14(6): 607-612. doi: 10.1038/nmat4267
|
[21] |
KOSHELEV K, TANG Y T, LI K F, et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 2019, 6(7): 1639-1644. doi: 10.1021/acsphotonics.9b00700
|
[22] |
KRASNOK A, TYMCHENKO M, ALÙ A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 2018, 21(1): 8-21. doi: 10.1016/j.mattod.2017.06.007
|
[23] |
YE W M, ZEUNER F, LI X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930. doi: 10.1038/ncomms11930
|
[24] |
CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. doi: 10.1038/ncomms2207
|
[25] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
|
[26] |
WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
|
[27] |
HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808
|
[28] |
LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
|
[29] |
ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
|
[30] |
TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
|
[31] |
STAUDE I, SCHILLING J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 2017, 11(5): 274-284. doi: 10.1038/nphoton.2017.39
|
[32] |
ZHANG SH, FAN W J, MINHAS B K, et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability[J]. Physical Review Letters, 2005, 94(3): 037402. doi: 10.1103/PhysRevLett.94.037402
|
[33] |
YAO J, LIU ZH W, LIU Y M, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930. doi: 10.1126/science.1157566
|
[34] |
HENTSCHEL M, SCHÄFERLING M, DUAN X Y, et al. Chiral plasmonics[J]. Science Advances, 2017, 3(5): e1602735. doi: 10.1126/sciadv.1602735
|
[35] |
ZHANG SH, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901. doi: 10.1103/PhysRevLett.102.023901
|
[36] |
KANG L, WANG CH Y, GUO X X, et al. Nonlinear chiral meta-mirrors: enabling technology for ultrafast switching of light polarization[J]. Nano Letters, 2020, 20(3): 2047-2055. doi: 10.1021/acs.nanolett.0c00007
|
[37] |
ASADCHY V S, DÍAZ-RUBIO A, TRETYAKOV S A. Bianisotropic metasurfaces: physics and applications[J]. Nanophotonics, 2018, 7(6): 1069-1094. doi: 10.1515/nanoph-2017-0132
|
[38] |
DORRAH A H, ELEFTHERIADES G V. Bianisotropic Huygens’ metasurface pairs for nonlocal power-conserving wave transformations[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1788-1792. doi: 10.1109/LAWP.2018.2866874
|
[39] |
YAZDI M, ALBOOYEH M, ALAEE R. A bianisotropic metasurface with resonant asymmetric absorption[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3004-3015. doi: 10.1109/TAP.2015.2423855
|
[40] |
WANG X CH, DÍAZ-RUBIO A, ASADCHY V S, et al. Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption[J]. Physical Review Letters, 2018, 121(25): 256802. doi: 10.1103/PhysRevLett.121.256802
|
[41] |
GUO Q H, GAO W L, CHEN J, et al. Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials[J]. Physical Review Letters, 2015, 115(6): 067402. doi: 10.1103/PhysRevLett.115.067402
|
[42] |
KHANIKAEV A B, MOUSAVI S H, TSE W K, et al. Photonic topological insulators[J]. Nature Materials, 2013, 12(3): 233-239. doi: 10.1038/nmat3520
|
[43] |
YANG B, GUO Q H, TREMAIN B, et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures[J]. Science, 2018, 359(6379): 1013-1016. doi: 10.1126/science.aaq1221
|
[44] |
JIA H W, ZHANG R X, GAO W L, et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials[J]. Science, 2019, 363(6423): 148-151. doi: 10.1126/science.aau7707
|
[45] |
YANG B, BI Y G, ZHANG R X, et al. Momentum space toroidal moment in a photonic metamaterial[J]. Nature Communications, 2021, 12(1): 1784. doi: 10.1038/s41467-021-22063-w
|
[46] |
PENG L, DUAN L F, WANG K W, et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media[J]. Nature Photonics, 2019, 13(12): 878-882. doi: 10.1038/s41566-019-0521-4
|
[47] |
XIA L B, YANG B, GUO Q H, et al. Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability[J]. Nanophotonics, 2019, 8(8): 1357-1362. doi: 10.1515/nanoph-2019-0047
|