Volume 15 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
YAN Gong-jing, LUO Wang, ZHANG Bin-zhi. High-precision surface reconstruction technology for elliptical flat mirrors[J]. Chinese Optics, 2022, 15(2): 318-326. doi: 10.37188/CO.2021-0106
Citation: YAN Gong-jing, LUO Wang, ZHANG Bin-zhi. High-precision surface reconstruction technology for elliptical flat mirrors[J]. Chinese Optics, 2022, 15(2): 318-326. doi: 10.37188/CO.2021-0106

High-precision surface reconstruction technology for elliptical flat mirrors

doi: 10.37188/CO.2021-0106
Funds:  Supported by National Natural Science Foundation of China (No. 61975201); Guangdong Basic and Applied Basic Research Foundation(2020A1515110259)
More Information
  • Corresponding author: binzh123@163.com
  • Received Date: 12 May 2021
  • Rev Recd Date: 10 Jun 2021
  • Available Online: 16 Aug 2021
  • Publish Date: 21 Mar 2022
  • In order to realize the high-precision surface measurement of large-diameter elliptical optical flat mirrors and improve the image quality of large-aperture telescope systems, the absolute measurement algorithm for flat elliptical mirrors is studied in this paper. Firstly, the orthogonal polynomials fitting of an elliptical optical flat mirror is studied. Then, the absolute testing algorithm is studied theoretically. The orthogonal absolute testing algorithm can effectively separate the surface error of the reference mirror from the mirror to be measured, which can realize the high-precision surface reconstruction of the elliptical flat mirror to be measured. To verify the actual testing accuracy of the above method, we carried out an absolute testing simulation and experiment on a 250 mm×300 mm mirror. In the simulation, the possibility that the reference surface error is high was considered. In the experiment, a 250 mm×300 mm elliptical testing area was selected in the Zygo300 mm standard flat surface. The above-mentioned elliptical area was tested by the 150 mm Zygo interferometer, and the surface reconstruction was realized based on the above-mentioned orthogonal absolute testing algorithm. The experimental results show that the surface error separation between the reference mirror and the elliptical mirror can be achieved by using the method described in this paper, and the residual RMS (Root-Mean Square) value of the absolute testing result is 0.29 nm, which proves the feasibility and accuracy of the method described in this paper. The high-precision surface reconstruction of the elliptical flat mirror can be achieved using the above method.

     

  • loading
  • [1]
    LI T, LIU Y, SUN Y Y, et al. Vectorial pupil optimization to compensate polarization distortion in immersion lithography system[J]. Optics Express, 2020, 28(4): 4412-4425. doi: 10.1364/OE.382051
    [2]
    VETTER A, KIRNER R, OPALEVS D, et al. Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source[J]. Optics Express, 2018, 26(17): 22218-22233. doi: 10.1364/OE.26.022218
    [3]
    LI T, LIU Y, SUN Y Y, et al. Multiple-field-point pupil wavefront optimization in computational lithography[J]. Applied Optics, 2019, 58(30): 8331-8338. doi: 10.1364/AO.58.008331
    [4]
    SKIDMORE W. Thirty meter telescope detailed science case: 2015[J]. Research in Astronomy and Astrophysics, 2015, 15(12): 1945-2140. doi: 10.1088/1674-4527/15/12/001
    [5]
    MA D L. Recommended conceptual optical system design for China’s Large Optical-infrared Telescope (LOT)[J]. Optics Express, 2018, 26(1): 108-119. doi: 10.1364/OE.26.000108
    [6]
    LI H Y, WALKER D, YU G Y, et al. Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope[J]. Applied Optics, 2013, 52(23): 5781-5787. doi: 10.1364/AO.52.005781
    [7]
    JI H R, ZHU ZH B, TAN H, et al. Design of a high-throughput telescope based on scanning an off-axis three-mirror anastigmat system[J]. Applied Optics, 2021, 60(10): 2817-2823. doi: 10.1364/AO.421998
    [8]
    KULAWIEC A, MURPHY P, DEMARCO M. Measurement of high-departure aspheres using subaperture stitching with the Variable Optical Null (VON)[J]. Proceedings of SPIE, 2010, 7655: 765512. doi: 10.1117/12.864962
    [9]
    SUPRANOWITZ C, MCFEE C, MURPHY P, et al. Asphere metrology using variable optical null technology[J]. Proceedings of SPIE, 2012, 8416: 841604. doi: 10.1117/12.2009289
    [10]
    朱鹏辉, 唐锋, 卢云君, 等. 高精度平面子孔径拼接算法研究[J]. 中国激光,2016,43(11):1104002. doi: 10.3788/CJL201643.1104002

    ZHU P H, TANG F, LU Y J, et al. Research on high accuracy sub-aperture stitching algorithm for flat optics[J]. Chinese Journal of Lasers, 2016, 43(11): 1104002. (in Chinese) doi: 10.3788/CJL201643.1104002
    [11]
    王孝坤. 大口径离轴凸非球面系统拼接检验技术[J]. 中国光学,2016,9(1):130-136. doi: 10.3788/co.20160901.0130

    WANG X K. Measurement of large off-axis convex asphere by systemic stitching testing method[J]. Chinese Optics, 2016, 9(1): 130-136. (in Chinese) doi: 10.3788/co.20160901.0130
    [12]
    张海东, 王孝坤, 薛栋林, 等. 一种针对超大口径凸非球面的面形检测方法[J]. 中国光学,2019,12(5):1147-1154. doi: 10.3788/co.20191205.1147

    ZHANG H D, WANG X K, XUE D L, et al. Surface testing method for ultra-large convex aspheric surfaces[J]. Chinese Optics, 2019, 12(5): 1147-1154. (in Chinese) doi: 10.3788/co.20191205.1147
    [13]
    郑彬, 陈永和, 傅雨田. 拼接式反射镜共焦误差检测[J]. 光学 精密工程,2019,27(1):26-33. doi: 10.3788/OPE.20192701.0026

    ZHENG B, CHEN Y H, FU Y T. Co-focus error detection of segmented mirrors[J]. Optics and Precision Engineering, 2019, 27(1): 26-33. (in Chinese) doi: 10.3788/OPE.20192701.0026
    [14]
    李斌, 刘燕德, 谢锋云. 拼接镜新型粗共相检测方法[J]. 光学 精密工程,2018,26(11):2647-2653. doi: 10.3788/OPE.20182611.2647

    LI B, LIU Y D, XIE F Y. Coarse co-phasing detection of segmented mirrors[J]. Optics and Precision Engineering, 2018, 26(11): 2647-2653. (in Chinese) doi: 10.3788/OPE.20182611.2647
    [15]
    逯诗桐, 张天一, 张晓辉. 大口径空间巡天望远镜子孔径拼接平场定标法[J]. 中国光学,2020,13(5):1094-1102. doi: 10.37188/CO.2019-0252

    LU SH T, ZHANG T Y, ZHANG X H. Flat-field calibration method for large diameter survey mirror aperture splicing[J]. Chinese Optics, 2020, 13(5): 1094-1102. (in Chinese) doi: 10.37188/CO.2019-0252
    [16]
    SU P, BURGE J H, PARKS R E. Application of maximum likelihood reconstruction of subaperture data for measurement of large flat mirrors[J]. Applied Optics, 2010, 49(1): 21-31. doi: 10.1364/AO.49.000021
    [17]
    SU D Q, MIAO E L, SUI Y X, et al. Absolute surface figure testing by shift-rotation method using Zernike polynomials[J]. Optics Letters, 2012, 37(15): 3198-3200. doi: 10.1364/OL.37.003198
    [18]
    YANG ZH M, DU J Y, TIAN CH, et al. Generalized shift-rotation absolute measurement method for high-numerical-aperture spherical surfaces with global optimized wavefront reconstruction algorithm[J]. Optics Express, 2017, 25(21): 26133-26147. doi: 10.1364/OE.25.026133
    [19]
    YANG ZH M, GAO ZH SH, ZHU D, et al. Absolute ultra-precision measurement of high-numerical-aperture spherical surface by high-order shift-rotation method using Zernike polynomials[J]. Optics Communications, 2015, 355: 191-199. doi: 10.1016/j.optcom.2015.06.033
    [20]
    MAHAJAN V N, DAI G M. Orthonormal polynomials in wavefront analysis: analytical solution[J]. Journal of the Optical Society of America A, 2007, 24(9): 2994-3016. doi: 10.1364/JOSAA.24.002994
    [21]
    DAI G M, MAHAJAN V N. Nonrecursive determination of orthonormal polynomials with matrix formulation[J]. Optics Letters, 2007, 32(1): 74-76. doi: 10.1364/OL.32.000074
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article views(834) PDF downloads(105) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return