Citation: | LI Mo-xin, WANG Dan-yan, ZHANG Cheng. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108 |
[1] |
DICK D J, SHAY T M. Ultrahigh-noise rejection optical filter[J]. Optics Letters, 1991, 16(11): 867-869. doi: 10.1364/OL.16.000867
|
[2] |
PHILIP J, JAYKUMAR T, KALYANASUNDARAM P, et al. A tunable optical filter[J]. Measurement Science and Technology, 2003, 14(8): 1289-1294. doi: 10.1088/0957-0233/14/8/314
|
[3] |
RAKULJIC G A, LEYVA V. Volume holographic narrow-band optical filter[J]. Optics Letters, 1993, 18(6): 459-461. doi: 10.1364/OL.18.000459
|
[4] |
UENUMA M, MOTOOKA T. Temperature-independent silicon waveguide optical filter[J]. Optics Letters, 2009, 34(5): 599-601. doi: 10.1364/OL.34.000599
|
[5] |
EMADI A, WU H, DE GRAAF G, et al. An UV linear variable optical filter-based micro-spectrometer[J]. Procedia Engineering, 2010, 5: 416-419. doi: 10.1016/j.proeng.2010.09.135
|
[6] |
CORREIA J H, EMADI A R, WOLFFENBUTTEL R F. UV bandpass optical filter for microspectometers[J]. ECS Transactions, 2007, 4(1): 141-147.
|
[7] |
IORDANOV V P, LUBKING G W, ISHIHARA R, et al. Silicon thin-film UV filter for NADH fluorescence analysis[J]. Sensors and Actuators A:Physical, 2002, 97-98: 161-166. doi: 10.1016/S0924-4247(01)00848-2
|
[8] |
GE P F, LIANG X, WANG J H, et al. Optical filter designs for multi-color visible light communication[J]. IEEE Transactions on Communications, 2019, 67(3): 2173-2187. doi: 10.1109/TCOMM.2018.2883422
|
[9] |
SUNG J Y, CHOW C W, YEH C H. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?[J]. Optics Express, 2014, 22(17): 20646-20651. doi: 10.1364/OE.22.020646
|
[10] |
BAQIR M A, CHOUDHURY P K, FATIMA T, et al. Graphene-over-graphite-based metamaterial structure as optical filter in the visible regime[J]. Optik, 2019, 180: 832-839. doi: 10.1016/j.ijleo.2018.12.005
|
[11] |
SHEN F, KANG Q L, WANG J J, et al. Dielectric metasurface-based high-efficiency mid-infrared optical filter[J]. Nanomaterials, 2018, 8(11): 938. doi: 10.3390/nano8110938
|
[12] |
ELSAYED H A. A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals[J]. Materials Chemistry and Physics, 2018, 216: 191-196. doi: 10.1016/j.matchemphys.2018.06.016
|
[13] |
VANYUKOV V V, MIKHEEV G M, MOGILEVA T N, et al. Near-IR nonlinear optical filter for optical communication window[J]. Applied Optics, 2015, 54(11): 3290-3293. doi: 10.1364/AO.54.003290
|
[14] |
ABE T, MURAKAMI Y, YAMAGUCHI M, et al. Color correction of pathological images based on dye amount quantification[J]. Optical Review, 2005, 12(4): 293-300. doi: 10.1007/s10043-005-0293-6
|
[15] |
CHAUHAN S S, SHARMA A L, JASRA R V. Photofunctions of dye encapsulated nanostructured silica films suitable for optical filter application[J]. Materials Science Forum, 2013, 757: 257-269. doi: 10.4028/www.scientific.net/MSF.757.257
|
[16] |
CHOI J, KIM S H, LEE W, et al. Synthesis and characterization of thermally stable dyes with improved optical properties for dye-based LCD color filters[J]. New Journal of Chemistry, 2012, 36(3): 812-818. doi: 10.1039/c2nj20938a
|
[17] |
JI CH G, ZHANG ZH, MASUDA T, et al. Vivid-colored silicon solar panels with high efficiency and non-iridescent appearance[J]. Nanoscale Horizons, 2019, 4(4): 874-880. doi: 10.1039/C8NH00368H
|
[18] |
LEE K T, LEE J Y, SEO S, et al. Colored ultrathin hybrid photovoltaics with high quantum efficiency[J]. Light:Science &Applications, 2014, 3(10): e215.
|
[19] |
QIU Y B, ZHAN L, HU X, et al. Demonstration of color filters for OLED display based on extraordinary optical transmission through periodic hole array on metallic film[J]. Displays, 2011, 32(5): 308-312. doi: 10.1016/j.displa.2011.05.011
|
[20] |
GHOBADI A, HAJIAN H, SOYDAN M C, et al. Lithography-free planar band-pass reflective color filter using a series connection of cavities[J]. Scientific Reports, 2019, 9(1): 290. doi: 10.1038/s41598-018-36540-8
|
[21] |
GOMES DE SOUZA I L, RODRIGUEZ-ESQUERRE V F. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum[J]. Scientific Reports, 2019, 9(1): 7045. doi: 10.1038/s41598-019-43539-2
|
[22] |
JI CH G, LEE K T, GUO L J. High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances[J]. Optics Letters, 2019, 44(1): 86-89. doi: 10.1364/OL.44.000086
|
[23] |
KIM Y, SON J, SHAFIAN S, et al. Semitransparent blue, green, and red organic solar cells using color filtering electrodes[J]. Advanced Optical Materials, 2018, 6(13): 1800051. doi: 10.1002/adom.201800051
|
[24] |
LEE J Y, LEE K T, SEO S, et al. Decorative power generating panels creating angle insensitive transmissive colors[J]. Scientific Reports, 2014, 4: 4192.
|
[25] |
LEE K T, HAN S Y, LI Z J, et al. Flexible high-color-purity structural color filters based on a higher-order optical resonance suppression[J]. Scientific Reports, 2019, 9(1): 14917. doi: 10.1038/s41598-019-51165-1
|
[26] |
LEE K T, KANG D, PARK H J, et al. Design of polarization-independent and wide-angle broadband absorbers for highly efficient reflective structural color filters[J]. Materials, 2019, 12(7): 1050. doi: 10.3390/ma12071050
|
[27] |
LI ZH Y, BUTUN S, AYDIN K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics, 2015, 2(2): 183-188. doi: 10.1021/ph500410u
|
[28] |
LIN Z H, LONG Y X, ZHU X P, et al. Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-Cavity-Resonance-Enhanced reflection[J]. Optik, 2019, 178: 992-998. doi: 10.1016/j.ijleo.2018.09.184
|
[29] |
LIU F, SHI H M, ZHU X P, et al. Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber[J]. Applied Optics, 2018, 57(30): 9040-9045. doi: 10.1364/AO.57.009040
|
[30] |
MAO K N, SHEN W D, YANG CH Y, et al. Angle insensitive color filters in transmission covering the visible region[J]. Scientific Reports, 2016, 6: 19289. doi: 10.1038/srep19289
|
[31] |
WANG Y S, ZHU X P, CHEN Y Q, et al. Fabrication of Fabry-Perot-cavity-based monolithic full-color filter arrays using a template-confined micro-reflow process[J]. Journal of Micromechanics and Microengineering, 2019, 29(2): 025008. doi: 10.1088/1361-6439/aaf6cb
|
[32] |
WEI CH W, ABEDINI DERESHGI S, SONG X L, et al. Polarization reflector/color filter at visible frequencies via anisotropic α-MoO3[J]. Advanced Optical Materials, 2020, 8(11): 2000088. doi: 10.1002/adom.202000088
|
[33] |
YANG ZH M, CHEN Y Q, ZHOU Y M, et al. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities[J]. Advanced Optical Materials, 2017, 5(10): 1700029. doi: 10.1002/adom.201700029
|
[34] |
ZHOU J, GUO L J. Transition from a color filter to a polarizer of a metallic nano-slit array[C]. Proceedings of the 2013 IEEE Photonics Conference, IEEE, 2013: 180-181.
|
[35] |
FEHREMBACH A L, SENTENAC A. Study of waveguide grating eigenmodes for unpolarized filtering applications[J]. Journal of the Optical Society of America A, 2003, 20(3): 481-488. doi: 10.1364/JOSAA.20.000481
|
[36] |
RAYLEIGH L. III. Note on the remarkable case of diffraction spectra described by Prof. Wood[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1907, 14(79): 60-65. doi: 10.1080/14786440709463661
|
[37] |
SHARON A, ROSENBLATT D, FRIESEM A A, et al. Light modulation with resonant grating-waveguide structures[J]. Optics Letters, 1996, 21(19): 1564-1566. doi: 10.1364/OL.21.001564
|
[38] |
WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. doi: 10.1364/AO.32.002606
|
[39] |
HEGEDUS Z, NETTERFIELD R. Low sideband guided-mode resonant filter[J]. Applied Optics, 2000, 39(10): 1469-1473. doi: 10.1364/AO.39.001469
|
[40] |
BOONRUANG S, GREENWELL A, MOHARAM M G. Multiline two-dimensional guided-mode resonant filters[J]. Applied Optics, 2006, 45(22): 5740-5747. doi: 10.1364/AO.45.005740
|
[41] |
BRUNDRETT D L, GLYTSIS E N, GAYLORD T K. Normal-incidence guided-mode resonant grating filters: design and experimental demonstration[J]. Optics Letters, 1998, 23(9): 700-702. doi: 10.1364/OL.23.000700
|
[42] |
UDDIN M J, MAGNUSSON R. Efficient guided-mode-resonant tunable color filters[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1552-1554. doi: 10.1109/LPT.2012.2208453
|
[43] |
LIU Z S, TIBULEAC S, SHIN D, et al. High-efficiency guided-mode resonance filter[J]. Optics Letters, 1998, 23(19): 1556-1558. doi: 10.1364/OL.23.001556
|
[44] |
TIBULEAC S, MAGNUSSON R. Reflection and transmission guided-mode resonance filters[J]. Journal of the Optical Society of America A, 1997, 14(7): 1617-1626. doi: 10.1364/JOSAA.14.001617
|
[45] |
MIZUTANI A, KIKUTA H, NAKAJIMA K, et al. Nonpolarizing guided-mode resonant grating filter for oblique incidence[J]. Journal of the Optical Society of America A, 2001, 18(6): 1261-1266. doi: 10.1364/JOSAA.18.001261
|
[46] |
WANG D Y, WANG Q K, WU M T. Spectral characteristics of a guided mode resonant filter with planes of incidence[J]. Applied Optics, 2018, 57(27): 7793-7797. doi: 10.1364/AO.57.007793
|
[47] |
QIAN L Y, ZHANG D W, TAO CH X, et al. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching[J]. Optics Letters, 2016, 41(5): 982-985. doi: 10.1364/OL.41.000982
|
[48] |
WANG CH T, HOU H H, CHANG P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Optics Express, 2016, 24(20): 22892-22898. doi: 10.1364/OE.24.022892
|
[49] |
WANG Q, ZHANG D W, XU B L, et al. Colored image produced with guided-mode resonance filter array[J]. Optics Letters, 2011, 36(23): 4698-4700. doi: 10.1364/OL.36.004698
|
[50] |
KAZANSKIY N L, SERAFIMOVICH P G, KHONINA S N. Harnessing the guided-mode resonance to design nanooptical transmission spectral filters[J]. Optical Memory and Neural Networks, 2010, 19(4): 318-324. doi: 10.3103/S1060992X10040090
|
[51] |
UDDIN M J, MAGNUSSON R. Highly efficient color filter array using resonant Si3N4 gratings[J]. Optics Express, 2013, 21(10): 12495-12506. doi: 10.1364/OE.21.012495
|
[52] |
KAPLAN A F, XU T, JAY GUO L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2011, 99(14): 143111. doi: 10.1063/1.3647633
|
[53] |
ELIKKOTTIL A, TAHERSIMA M H., GUPTA M. V. N. S, et al. A Spectrally tunable dielectric subwavelength grating based broadband planar light concentrator[J]. Scientific Reports, 2019, 9: 11723.
|
[54] |
YOON Y T, PARK C H, LEE S S. Highly efficient color filter incorporating a thin metal-dielectric resonant structure[J]. Applied Physics Express, 2012, 5(2): 022501. doi: 10.1143/APEX.5.022501
|
[55] |
SHYIQ AMIN M, WOONG YOON J, MAGNUSSON R. Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly[J]. Applied Physics Letters, 2013, 103(13): 131106. doi: 10.1063/1.4823532
|
[56] |
SAKAT E, VINCENT G, GHENUCHE P, et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Optics Letters, 2011, 36(16): 3054-3056. doi: 10.1364/OL.36.003054
|
[57] |
UDDIN M J, KHALEQUE T, MAGNUSSON R. Guided-mode resonant polarization-controlled tunable color filters[J]. Optics Express, 2014, 22(10): 12307-12315. doi: 10.1364/OE.22.012307
|
[58] |
BARNES W L. Surface plasmon-polariton length scales: a route to sub-wavelength optics[J]. Journal of Optics A:Pure and Applied Optics, 2006, 8(4): S87-S93. doi: 10.1088/1464-4258/8/4/S06
|
[59] |
BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi: 10.1038/nature01937
|
[60] |
OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849
|
[61] |
LIAO H B, XIAO R F, WANG H, et al. Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale[J]. Applied Physics Letters, 1998, 72(15): 1817-1819. doi: 10.1063/1.121193
|
[62] |
NIE SH M, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106. doi: 10.1126/science.275.5303.1102
|
[63] |
RICARD D, ROUSSIGNOL P, FLYTZANIS C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513. doi: 10.1364/OL.10.000511
|
[64] |
EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi: 10.1038/35570
|
[65] |
MARTÍN-MORENO L, GARCÍA-VIDAL F J, LEZEC H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 2001, 86(6): 1114-1117. doi: 10.1103/PhysRevLett.86.1114
|
[66] |
HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B:Chemical, 1999, 54(1-2): 3-15. doi: 10.1016/S0925-4005(98)00321-9
|
[67] |
MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857. doi: 10.1021/cr100313v
|
[68] |
HUTTER E, FENDLER J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706. doi: 10.1002/adma.200400271
|
[69] |
LIEDBERG B, NYLANDER C, LUNSTRÖM I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators, 1983, 4: 299-304. doi: 10.1016/0250-6874(83)85036-7
|
[70] |
PATTNAIK P. Surface plasmon resonance: applications in understanding receptor-ligand interaction[J]. Applied Biochemistry and Biotechnology, 2005, 126(2): 79-92. doi: 10.1385/ABAB:126:2:079
|
[71] |
HOMOLA J. Present and future of surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 528-539. doi: 10.1007/s00216-003-2101-0
|
[72] |
ZENG B B, GAO Y K, BARTOLI F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reports, 2013, 3: 2840. doi: 10.1038/srep02840
|
[73] |
SHRESTHA V R, LEE S S, KIM E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 2014, 14(11): 6672-6678. doi: 10.1021/nl503353z
|
[74] |
ZHANG J X, ZHANG L D, XU W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D:Applied Physics, 2012, 45(11): 113001. doi: 10.1088/0022-3727/45/11/113001
|
[75] |
WU Y K R, HOLLOWELL A E, ZHANG CH, et al. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit[J]. Scientific Reports, 2013, 3: 1194. doi: 10.1038/srep01194
|
[76] |
WANG H, WANG X L, YAN CH, et al. Full color generation using silver tandem nanodisks[J]. ACS Nano, 2017, 11(5): 4419-4427. doi: 10.1021/acsnano.6b08465
|
[77] |
ROBERTS A S, PORS A, ALBREKTSEN O, et al. Subwavelength plasmonic color printing protected for ambient use[J]. Nano Letters, 2014, 14(2): 783-787. doi: 10.1021/nl404129n
|
[78] |
KUMAR K, DUAN H G, HEGDE R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi: 10.1038/nnano.2012.128
|
[79] |
CLAUSEN J S, HØJLUND-NIELSEN E, CHRISTIANSEN A B, et al. Plasmonic metasurfaces for coloration of plastic consumer products[J]. Nano Letters, 2014, 14(8): 4499-4504. doi: 10.1021/nl5014986
|
[80] |
CHENG F, GAO J, LUK T S, et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption[J]. Scientific Reports, 2015, 5: 11045. doi: 10.1038/srep11045
|
[81] |
GOUESBET G, GRÉHAN G. Corrections for Mie theory given in “The Scattering of Light and Other Electromagnetic Radiation”: comments[J]. Applied Optics, 1984, 23(24): 4462_1-4464. doi: 10.1364/AO.23.4462_1
|
[82] |
WRIEDT T. Mie theory: a review[M]//HERGERT W, WRIEDT T. The Mie Theory: Basics and Applications. Berlin Heidelberg: Springer, 2012: 53-71.
|
[83] |
STEINKE J M, SHEPHERD A P. Comparison of Mie theory and the light scattering of red blood cells[J]. Applied Optics, 1988, 27(19): 4027-4033. doi: 10.1364/AO.27.004027
|
[84] |
LAVEN P. Simulation of rainbows, coronas, and glories by use of Mie theory[J]. Applied Optics, 2003, 42(3): 436-444. doi: 10.1364/AO.42.000436
|
[85] |
UNGUT A, GREHAN G, GOUESBET G. Comparisons between geometrical optics and Lorenz-Mie theory[J]. Applied Optics, 1981, 20(17): 2911-2918. doi: 10.1364/AO.20.002911
|
[86] |
LOCK J A, GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11): 800-807. doi: 10.1016/j.jqsrt.2008.11.013
|
[87] |
FU Q, SUN W B. Mie theory for light scattering by a spherical particle in an absorbing medium[J]. Applied Optics, 2001, 40(9): 1354-1361. doi: 10.1364/AO.40.001354
|
[88] |
GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Particle &Particle Systems Characterization, 1994, 11(1): 22-34.
|
[89] |
GOUESBET G, GRÉHAN G. Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[J]. Journal of Modern Optics, 2000, 47(5): 821-837. doi: 10.1080/09500340008235093
|
[90] |
MACKOWSKI D. The extension of mie theory to multiple spheres[M]//HERGERT W, WRIEDT T. The Mie Theory: Basics and Applications. Berlin Heidelberg: Springer, 2012: 223-256.
|
[91] |
GOUESBET G, GREHAN G. Generalized Lorenz-Mie theory for assemblies of spheres and aggregates[J]. Journal of Optics A:Pure and Applied Optics, 1999, 1(6): 706-712. doi: 10.1088/1464-4258/1/6/309
|
[92] |
REN K F, GRÉHAN G, GOUESBET G. Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results[J]. Journal of the Optical Society of America A, 1997, 14(11): 3014-3025. doi: 10.1364/JOSAA.14.003014
|
[93] |
GOUESBET G, MEES L. Generalized Lorenz-Mie theory for infinitely long elliptical cylinders[J]. Journal of the Optical Society of America A, 1999, 16(6): 1333-1341. doi: 10.1364/JOSAA.16.001333
|
[94] |
GOUESBET G. Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres[J]. Journal of the Optical Society of America A, 1999, 16(7): 1641-1650. doi: 10.1364/JOSAA.16.001641
|
[95] |
GOUESBET G, MEES L. Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz-Mie theory for elliptical cylinders[J]. Journal of the Optical Society of America A, 1999, 16(12): 2946-2958. doi: 10.1364/JOSAA.16.002946
|
[96] |
GOUESBET G, GRÉHAN G, REN K F. Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz-Mie theory for cylinders[J]. Journal of the Optical Society of America A, 1998, 15(2): 511-523. doi: 10.1364/JOSAA.15.000511
|
[97] |
CAO L Y, WHITE J S, PARK J S, et al. Engineering light absorption in semiconductor nanowire devices[J]. Nature Materials, 2009, 8(8): 643-647. doi: 10.1038/nmat2477
|
[98] |
CAO L Y, FAN P Y, BARNARD E S, et al. Tuning the color of silicon nanostructures[J]. Nano Letters, 2010, 10(7): 2649-2654. doi: 10.1021/nl1013794
|
[99] |
FLAURAUD V, REYES M, PANIAGUA-DOMÍNGUEZ R, et al. Silicon nanostructures for bright field full color prints[J]. ACS Photonics, 2017, 4(8): 1913-1919. doi: 10.1021/acsphotonics.6b01021
|
[100] |
NAGASAKI Y, SUZUKI M, TAKAHARA J. All-dielectric dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12): 7500-7506. doi: 10.1021/acs.nanolett.7b03421
|
[101] |
PARK C S, SHRESTHA V R, YUE W J, et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks[J]. Scientific Reports, 2017, 7(1): 2556. doi: 10.1038/s41598-017-02911-w
|
[102] |
PROUST J, BEDU F, GALLAS B, et al. All-dielectric colored metasurfaces with silicon Mie resonators[J]. ACS Nano, 2016, 10(8): 7761-7767. doi: 10.1021/acsnano.6b03207
|
[103] |
ZHU X L, YAN W, LEVY U, et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5): e1602487. doi: 10.1126/sciadv.1602487
|
[104] |
YANG W H, XIAO S M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11: 1864.
|
[105] |
SUN SH, ZHOU ZH X, ZHANG CH, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452.
|
[106] |
LIU H, YANG H, LI Y R, et al. Switchable All-dielectric metasurfaces for full-color reflective display[J]. Advanced Optical Materials, 2019, 7(8): 1801639.
|
[107] |
YANG B, LIU W W, LI ZH CH, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009.
|
[108] |
TAN S J, ZHANG L, ZHU D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029. doi: 10.1021/nl501460x
|
[109] |
HUO P CH, SONG M W, ZHU W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171-1172. doi: 10.1364/OPTICA.403092
|
[110] |
WEI Q SH, SAIN B, WANG Y T, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 2019, 19(12): 8964-8971. doi: 10.1021/acs.nanolett.9b03957
|
[111] |
ZHANG F, PU M B, GAO P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Advanced Science, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156
|
[112] |
ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. doi: 10.1002/adma.201707499
|
[113] |
KO J H, YOO Y J, KIM Y J, et al. Flexible, large-area covert polarization display based on ultrathin lossy nanocolumns on a metal film[J]. Advanced Functional Materials, 2020, 30(11): 1908592. doi: 10.1002/adfm.201908592
|
[114] |
JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459-463. doi: 10.1126/science.abc8530
|
[115] |
PARK H J, XU T, LEE J Y, et al. Photonic color filters integrated with organic solar cells for energy harvesting[J]. ACS Nano, 2011, 5(9): 7055-7060. doi: 10.1021/nn201767e
|
[116] |
HUERTAS R, ÁNGEL MARTÍNEZ-DOMINGO M, VALERO E M, et al. Metasurface-based contact lenses for color vision deficiency: comment[J]. Optics Letters, 2020, 45(18): 5117-5118. doi: 10.1364/OL.394717
|
[117] |
SHAH Y D, CONNOLLY P W R, GRANT J P, et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters[J]. Optica, 2020, 7(6): 632-639. doi: 10.1364/OPTICA.389905
|
[118] |
SONG H Y, MA Y G, HAN Y B, et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Advanced Theory and Simulations, 2021, 4(3): 2000299. doi: 10.1002/adts.202000299
|
[119] |
DUAN X Y, LIU N. Scanning plasmonic color display[J]. ACS Nano, 2018, 12(8): 8817-8823. doi: 10.1021/acsnano.8b05467
|
[120] |
NAGASAKI Y, SUZUKI M, HOTTA I, et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 2018, 5(4): 1460-1466. doi: 10.1021/acsphotonics.7b01467
|
[121] |
WU Y K, YANG W H, FAN Y B, et al. TiO2 metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances, 2019, 5(11): eaax0939. doi: 10.1126/sciadv.aax0939
|
[122] |
FENG Z Y, JIANG CH, HE Y, et al. Widely adjustable and quasi-reversible electrochromic device based on core-shell Au-Ag plasmonic nanoparticles[J]. Advanced Optical Materials, 2014, 2(12): 1174-1180. doi: 10.1002/adom.201400260
|
[123] |
ZHANG CH, JING J X, WU Y K, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418-1426. doi: 10.1021/acsnano.9b08228
|
[124] |
HOLSTEEN A L, CIHAN A F, BRONGERSMA M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 2019, 365(6450): 257-260. doi: 10.1126/science.aax5961
|
[125] |
LEE Y, PARK M K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-1966. doi: 10.1021/acsphotonics.7b00249
|
[126] |
SUN SH, YANG W H, ZHANG CH, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159. doi: 10.1021/acsnano.7b07121
|
[127] |
CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116. doi: 10.1063/1.114851
|
[128] |
CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87. doi: 10.1126/science.272.5258.85
|
[129] |
KRAUSS P R, CHOU S Y. Sub-10 nm imprint lithography and applications[C]. Proceedings of the 1997 55th Annual Device Research Conference Digest, IEEE, 1997.
|
[130] |
AHN S H, KIM J S, GUO L J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate[J]. Journal of Vacuum Science &Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena, 2007, 25(6): 2388-2391.
|
[131] |
PARK H J, KANG M G, AHN S H, et al. A Facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performances[J]. Advanced Materials, 2010, 22(35): E247-E253. doi: 10.1002/adma.201000250
|
[132] |
SHIN S, YANG M Y, GUO L J, et al. Roll-to-roll cohesive, coated, flexible, high-efficiency polymer light-emitting diodes utilizing ITO-free polymer anodes[J]. Small, 2013, 9(23): 4036-4044. doi: 10.1002/smll.201300382
|
[133] |
SUBBARAMAN H, LIN X H, XU X CH, et al.. Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of flexible electronic systems[C]. Proceedings of SPIE, Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VI, SPIE, 2012: 846603.
|
[134] |
WANG L, MA L J, ZHAO Q L, et al. Internal nanocavity based high-resolution and stable structural colours fabricated by laser printing[J]. Optics Express, 2021, 29(5): 7428-7234. doi: 10.1364/OE.418103
|
[135] |
GUAY J M, LESINA A C, CÔTÉ G, et al. Laser-induced plasmonic colours on metals[J]. Nature Communications, 2017, 8: 16095. doi: 10.1038/ncomms16095
|
[136] |
LUK'YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715. doi: 10.1038/nmat2810
|
[137] |
RAHMANI M, LUK'YANCHUK B, HONG M H, et al. Fano resonance in novel plasmonic nanostructures[J]. Laser &Photonics Reviews, 2013, 7(3): 329-349.
|