Volume 15 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LIU Hai-feng, GUO Hong-jie, TAN Man-qing, LI Zhi-yong. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 2022, 15(1): 1-13. doi: 10.37188/CO.2021-0115
Citation: LIU Hai-feng, GUO Hong-jie, TAN Man-qing, LI Zhi-yong. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 2022, 15(1): 1-13. doi: 10.37188/CO.2021-0115

Research progress of lithium niobate thin-film modulators

Funds:  Supported by National Key Research and Development Program of China (No. 2019YFB2203802); National Natural Science Foundation of China (No. 61934007)
More Information
  • Corresponding author: mqtan@semi.ac.cn
  • Received Date: 24 May 2021
  • Rev Recd Date: 25 Jun 2021
  • Available Online: 16 Oct 2021
  • Publish Date: 19 Jan 2022
  • Electro-optic modulators based on lithium niobate (LiNbO3, LN) thin-film platforms are advantageous for their small volume, high bandwidth and low half-wave voltage. They have important application prospects in the field of optical fiber communication and optical fiber sensing, and thus have became a heavily researched topic in recent years. In this paper, the research progress of the waveguide structures, coupling structures and electrode structures of LN thin-film modulators are reviewed in detail. The fabrication process of a LN thin-film waveguide is summarized, and the performances of different modulator structures are analyzed. Based on SOI and LNOI, a platform modulator is realized with VπL<2 V∙cm, a bilayer inversely tapered coupling scheme achieves a coupling loss <0.5 dB/facet , and a traveling wave electrode structure achieves a modulation bandwidth >100 GHz. Thin-film LN modulators are better than commercial LN modulators in most aspects. It can be predicted that in the near future, with the further improvement in waveguide technology, thin-film LN will become a popular scheme of LN modulators. Finally, the potential directions for the future of their research are proposed.

     

  • loading
  • [1]
    WOOTEN E L, KISSA K M, YI-YAN A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 69-82. doi: 10.1109/2944.826874
    [2]
    TENG M, HONARDOOST A, ALAHMADI Y, et al. Miniaturized silicon photonics devices for integrated optical signal processors[J]. Journal of Lightwave Technology, 2020, 38(1): 6-17. doi: 10.1109/JLT.2019.2943251
    [3]
    SUN CH, WADE M T, LEE Y, et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 2015, 528(7583): 534-538. doi: 10.1038/nature16454
    [4]
    OGISO Y, OZAKI J, UEDA Y, et al. Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure[J]. Journal of Lightwave Technology, 2017, 35(8): 1450-1455. doi: 10.1109/JLT.2016.2639542
    [5]
    KOEBER S, PALMER R, LAUERMANN M, et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device[J]. Light:Science &Applications, 2015, 4(2): e255.
    [6]
    HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 2018, 556(7702): 483-486. doi: 10.1038/s41586-018-0031-4
    [7]
    GUTIERREZ A M, GALAN J V, HERRERA J, et al. . High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications[C]. Proceedings of the 9th International Conference on Group IV Photonics (GFP), IEEE, 2012: 57-59.
    [8]
    陈柄言, 于永吉, 吴春婷, 等. 窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO: PPLN光参量振荡器[J]. 中国光学,2021,14(2):361-367. doi: 10.37188/CO.2020-0169

    CHEN B Y, YU Y J, WU CH T, et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J]. Chinese Optics, 2021, 14(2): 361-367. (in Chinese) doi: 10.37188/CO.2020-0169
    [9]
    Srico. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.srico.com/products/.
    [10]
    Optilab. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.optilab.com/optical-modulator.
    [11]
    EOspace. Lithium niobate modulator[EB/OL]. [2021-08-31].https://www.eospace.com/product-summary-modulator.
    [12]
    WEIGEL P O, ZHAO J, FANG K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Optics Express, 2018, 26(18): 23728-23739. doi: 10.1364/OE.26.023728
    [13]
    WANG X X, WEIGEL P O, ZHAO J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate[J]. APL Photonics, 2019, 4(9): 096101. doi: 10.1063/1.5115243
    [14]
    LI M X, LIANG H X, LUO R, et al. High‐Q 2D lithium niobate photonic crystal slab nanoresonators[J]. Laser &Photonics Reviews, 2019, 13(5): 1800228.
    [15]
    LI M X, LIANG H X, LUO R, et al. Photon-level tuning of photonic nanocavities[J]. Optica, 2019, 6(7): 860-863. doi: 10.1364/OPTICA.6.000860
    [16]
    QIAO Q F, XIA J, LEE C, et al. Applications of photonic crystal nanobeam cavities for sensing[J]. Micromachines, 2018, 9(11): 541. doi: 10.3390/mi9110541
    [17]
    李天琦, 毛小洁, 雷健, 等. 固体激光器与光纤激光器对光子晶体光纤棒耦合的分析与对比[J]. 中国光学,2018,11(6):958-973. doi: 10.3788/co.20181106.0958

    LI T Q, MAO X J, LEI J, et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J]. Chinese Optics, 2018, 11(6): 958-973. (in Chinese) doi: 10.3788/co.20181106.0958
    [18]
    史光辉. 半导体激光耦合新方法[J]. 中国光学,2013,6(3):343-352.

    SHI G H. Improved method for semiconductor laser coupling[J]. Chinese Optics, 2013, 6(3): 343-352. (in Chinese)
    [19]
    SON G, HAN S, PARK J, et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits[J]. Nanophotonics, 2018, 7(12): 1845-1864. doi: 10.1515/nanoph-2018-0075
    [20]
    HONARDOOST A, GONZALEZ G F C, KHAN S, et al. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates[J]. IEEE Photonics Journal, 2018, 10(3): 4500909.
    [21]
    LI Y, LAN T, LI J, et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide[J]. Applied Optics, 2020, 59(22): 6694-6701. doi: 10.1364/AO.395897
    [22]
    KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Nanostructuring of LNOI for efficient edge coupling[J]. Optics Express, 2019, 27(12): 16578-16585. doi: 10.1364/OE.27.016578
    [23]
    LIU D N, FENG L SH, JIA Y Z, et al. Heterogeneous integration of LN and Si3N4 waveguides using an optical interlayer coupler[J]. Optics Communications, 2019, 436: 1-6. doi: 10.1016/j.optcom.2018.11.058
    [24]
    HE L Y, ZHANG M, SHAMS-ANSARI A, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 2019, 44(9): 2314-2317. doi: 10.1364/OL.44.002314
    [25]
    YING P, TAN H Y, ZHANG J W, et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter[J]. Optics Letters, 2021, 46(6): 1478-1481. doi: 10.1364/OL.418996
    [26]
    KRASNOKUTSKA I, CHAPMAN R J, TAMBASCO J L J, et al. High coupling efficiency grating couplers on lithium niobate on insulator[J]. Optics Express, 2019, 27(13): 17681-17685. doi: 10.1364/OE.27.017681
    [27]
    MAHMOUD M, CAI L T, BOTTENFIELD C, et al. Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform[J]. IEEE Photonics Journal, 2018, 10(1): 6600410.
    [28]
    YAO N, ZHOU J X, GAO R H, et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber[J]. Optics Express, 2020, 28(8): 12416-12423. doi: 10.1364/OE.391228
    [29]
    WANG M K, LI J H, CHEN K X, et al. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber[J]. Optics Express, 2020, 28(15): 21464-21473. doi: 10.1364/OE.396613
    [30]
    ALFERNESS R C. Waveguide electrooptic modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(8): 1121-1137. doi: 10.1109/TMTT.1982.1131213
    [31]
    BINH L N. Tilted traveling wave electrodes and impacts on high-speed operation of integrated electro-optic modulators: modeling and experimental demonstration[J]. Optical Engineering, 2009, 48(9): 097005. doi: 10.1117/1.3231504
    [32]
    YANG D C, CHEN Y K, XIANG M H, et al. Traveling wave electrode design for a LiNbO3 integrated optical switch[J]. Proceedings of SPIE, 2019, 11334: 113341B.
    [33]
    GEE A, JAAFAR A H, KEMP N T. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration[J]. Nanotechnology, 2020, 31(15): 155203. doi: 10.1088/1361-6528/ab6473
    [34]
    AIDIL S A, NUZAIHAN M N M, ARSHAD M K, et al. . Fabrication and characterization of poly-Si nanowire with Thin Film of Ni/Au contact pad using conventional photolithography[C]. Proceedings of 2019 IEEE International Conference on Sensors and Nanotechnology, IEEE, 2019: 29-32.
    [35]
    KUBOTA K, NODA J, MIKAMI O. Traveling wave optical modulator using a directional coupler LiNbO3waveguide[J]. IEEE Journal of Quantum Electronics, 1980, 16(7): 754-760. doi: 10.1109/JQE.1980.1070563
    [36]
    LEVY M, RADOJEVIC A M. Single-crystal lithium niobate films by crystal ion slicing[M]. ALEXE M, GÖSELE U. Wafer Bonding: Applications and Technology. Berlin, Heidelberg: Springer, 2004: 417-450.
    [37]
    RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 3400114.
    [38]
    HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[J]. Proceedings of SPIE, 2010, 7604: 76040R. doi: 10.1117/12.842674
    [39]
    POBERAJ G, KOECHLIN M, SULSER F, et al. Ion-sliced lithium niobate thin films for active photonic devices[J]. Optical Materials, 2009, 31(7): 1054-1058. doi: 10.1016/j.optmat.2007.12.019
    [40]
    TAKIGAWA R, ASANO T. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer[J]. Optics Express, 2018, 26(19): 24413-24421. doi: 10.1364/OE.26.024413
    [41]
    HOWLADER M M R, SUGA T, KIM M J. Room temperature bonding of silicon and lithium niobate[J]. Applied Physics Letters, 2006, 89(3): 031914. doi: 10.1063/1.2229262
    [42]
    LEE Y S, KIM G D, KIM W J, et al. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J]. Optics Letters, 2011, 36(7): 1119-1121. doi: 10.1364/OL.36.001119
    [43]
    ARIZMENDI L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi (A), 2004, 201(2): 253-283. doi: 10.1002/pssa.200303911
    [44]
    YU J, ZHANG CH X, LI CH SH, et al. Influence of polarization-dependent crosstalk on scale factor in the in-line Sagnac interferometer current sensor[J]. Optical Engineering, 2013, 52(11): 117101. doi: 10.1117/1.OE.52.11.117101
    [45]
    PAZ‐PUJALT G R, TUSCHEL D D, BRAUNSTEIN G, et al. Characterization of proton exchange lithium niobate waveguides[J]. Journal of Applied Physics, 1994, 76(7): 3981-3987. doi: 10.1063/1.358495
    [46]
    PALIWAL A, SHARMA A, GUO R Y, et al. Electro-optic (EO) effect in proton-exchanged lithium niobate: towards EO modulator[J]. Applied Physics B, 2019, 125(7): 115. doi: 10.1007/s00340-019-7227-7
    [47]
    HAN H P, XIANG B X, LIN T, et al. Design and optimization of proton exchanged integrated electro-optic modulators in X-Cut lithium niobate thin film[J]. Crystals, 2019, 9(11): 549. doi: 10.3390/cryst9110549
    [48]
    ULLIAC G, GUICHARDAZ B, RAUCH J Y, et al. Ultra-smooth LiNbO3 micro and nano structures for photonic applications[J]. Microelectronic Engineering, 2011, 88(8): 2417-2419. doi: 10.1016/j.mee.2011.02.024
    [49]
    WANG CH, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 2018, 26(2): 1547-1555. doi: 10.1364/OE.26.001547
    [50]
    KRASNOKUTSKA I, TAMBASCO J L J, LI X J, et al. Ultra-low loss photonic circuits in lithium niobate on insulator[J]. Optics Express, 2018, 26(2): 897-904. doi: 10.1364/OE.26.000897
    [51]
    WANG J, BO F, WAN SH, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 2015, 23(18): 23072-23078. doi: 10.1364/OE.23.023072
    [52]
    WANG M, WU R B, LIN J T, et al. Chemo‐mechanical polish lithography: a pathway to low loss large‐scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 2019, 1(1): e9. doi: 10.1002/que2.9
    [53]
    ZHANG J H, FANG ZH W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials (Basel), 2019, 9(9): 1218. doi: 10.3390/nano9091218
    [54]
    HU H, RICKEN R, SOHLER W, et al. Lithium niobate ridge waveguides fabricated by wet etching[J]. IEEE Photonics Technology Letters, 2007, 19(6): 417-419. doi: 10.1109/LPT.2007.892886
    [55]
    ULLIAC G, CALERO V, NDAO A, et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application[J]. Optical Materials, 2016, 53: 1-5. doi: 10.1016/j.optmat.2015.12.040
    [56]
    张琨, 岳远斌, 李彤, 等. 感应耦合等离子体刻蚀在聚合物光波导制作中的应用[J]. 中国光学,2012,5(1):64-70. doi: 10.3969/j.issn.2095-1531.2012.01.010

    ZHANG K, YUE Y B, LI T, et al. Application of ICP etching in fabrication of polymer optical waveguide[J]. Chinese Optics, 2012, 5(1): 64-70. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.01.010
    [57]
    WANG CH, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. doi: 10.1038/s41586-018-0551-y
    [58]
    WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials (Basel), 2018, 8(11): 910. doi: 10.3390/nano8110910
    [59]
    LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5(1): 8072.
    [60]
    RÜTER C E, SUNTSOV S, KIP D, et al. Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates[J]. Proceedings of SPIE, 2014, 8982: 89821G.
    [61]
    VOLK M F, SUNTSOV S, RÜTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J]. Optics Express, 2016, 24(2): 1386-1391. doi: 10.1364/OE.24.001386
    [62]
    AHMED A N R, NELAN S, SHI SH Y, et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform[J]. Optics Letters, 2020, 45(5): 1112-1115. doi: 10.1364/OL.381892
    [63]
    SOLER M, SCHOLTZ A, ZETO R, et al. Engineering photonics solutions for COVID-19[J]. APL Photonics, 2020, 5(9): 090901. doi: 10.1063/5.0021270
    [64]
    HONARDOOST A, JUNEGHANI F A, SAFIAN R, et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators[J]. Optics Express, 2019, 27(5): 6495-6501. doi: 10.1364/OE.27.006495
    [65]
    AHMED A N R, SHI SH Y, MERCANTE A J, et al. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform[J]. Optics Express, 2019, 27(21): 30741-30751. doi: 10.1364/OE.27.030741
    [66]
    JIN T N, ZHOU J CH, LIN P T. Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides[J]. Scientific Reports, 2019, 9(1): 15130. doi: 10.1038/s41598-019-51563-5
    [67]
    RABIEI P, MA J CH, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 2013, 21(21): 25573-25581. doi: 10.1364/OE.21.025573
    [68]
    RAO A, PATIL A, CHILES J, et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J]. Optics Express, 2015, 23(17): 22746-22752. doi: 10.1364/OE.23.022746
    [69]
    LI SH, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 2015, 23(19): 24212-24219. doi: 10.1364/OE.23.024212
    [70]
    LIU Y, LI H, LIU J, et al. Low Vπ thin-film lithium niobate modulator fabricated with photolithography[J]. Optics Express, 2021, 29(5): 6320-6329. doi: 10.1364/OE.414250
    [71]
    AHMED A N R, SHI SH Y, MERCANTE A, et al. High-efficiency lithium niobate modulator for K band operation[J]. APL Photonics, 2020, 5(9): 091302. doi: 10.1063/5.0020040
    [72]
    XU M Y, HE M B, ZHANG H G, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 2020, 11(1): 3911. doi: 10.1038/s41467-020-17806-0
    [73]
    HAN H P, XIANG B X. Integrated electro-optic modulators in x-cut lithium niobate thin film[J]. Optik, 2020, 212: 164691. doi: 10.1016/j.ijleo.2020.164691
    [74]
    DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 2019, 6(3): 380-384. doi: 10.1364/OPTICA.6.000380
    [75]
    HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364. doi: 10.1038/s41566-019-0378-6
    [76]
    XU M Y, CHEN W J, HE M B, et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform[J]. APL Photonics, 2019, 4(10): 100802. doi: 10.1063/1.5115136
    [77]
    JIAN J, XU M Y, LIU L, et al. High modulation efficiency lithium niobate Michelson interferometer modulator[J]. Optics Express, 2019, 27(13): 18731-18739. doi: 10.1364/OE.27.018731
    [78]
    CAI L T, KANG Y, HU H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J]. Optics Express, 2016, 24(5): 4640-4647. doi: 10.1364/OE.24.004640
    [79]
    LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11(1): 4123. doi: 10.1038/s41467-020-17950-7
    [80]
    BAHADORI M, YANG Y S, HASSANIEN A E, et al. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform[J]. Optics Express, 2020, 28(20): 29644-29661. doi: 10.1364/OE.400413
    [81]
    KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Tunable large free spectral range microring resonators in lithium niobate on insulator[J]. Scientific Reports, 2019, 9(1): 11086. doi: 10.1038/s41598-019-47231-3
    [82]
    JIN SH L, XU L T, ZHANG H H, et al. LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides[J]. IEEE Photonics Technology Letters, 2016, 28(7): 736-739. doi: 10.1109/LPT.2015.2507136
    [83]
    REN T H, ZHANG M, WANG CH, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. doi: 10.1109/LPT.2019.2911876
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(9)

    Article views(5873) PDF downloads(2000) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return