Volume 14 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
DANG Wen-jia, GAO Qi, LI Zhe, LI Gang. Research progress of tunable fiber light sources with wavelength near 1 μm[J]. Chinese Optics, 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125
Citation: DANG Wen-jia, GAO Qi, LI Zhe, LI Gang. Research progress of tunable fiber light sources with wavelength near 1 μm[J]. Chinese Optics, 2021, 14(5): 1120-1132. doi: 10.37188/CO.2021-0125

Research progress of tunable fiber light sources with wavelength near 1 μm

Funds:  Supported by National Key R& D Program of China (No. 2017YFB1104400).
More Information
  • Corresponding author: lizhe@opt.ac.cnligang85@opt.ac.cn
  • Received Date: 10 Jun 2021
  • Rev Recd Date: 13 Jul 2021
  • Available Online: 19 Aug 2021
  • Publish Date: 18 Sep 2021
  • Tunable fiber light sources with wavelength near 1 μm are widely used in optical fiber sensing, laser cooling, photochemical, spectroscopy and medical fields. They have thus become an area of focus in fiber light source research in recent years. The development history of fiber light sources with wavelength tuning ability is firstly summarized systematically. Then, their problems and possible solutions are analyzed. Finally, the future developments of tunable fiber light sources near 1 μm are prospected.

     

  • loading
  • [1]
    NILSSON J, CLARKSON W A, SELVAS R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers[J]. Optical Fiber Technology, 2004, 10(1): 5-30. doi: 10.1016/j.yofte.2003.07.001
    [2]
    KOESTER C J, SNITZER E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182
    [3]
    JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273
    [4]
    党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学,2020,13(4):676-694. doi: 10.37188/CO.2019-0208

    DANG W J, LI ZH, LI Y T, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi: 10.37188/CO.2019-0208
    [5]
    ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi: 10.1142/S0217979214420090
    [6]
    TER-MIKIRTYCHEV V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. New York: Springer, 2014.
    [7]
    韩辉云. 可调谐掺镱光纤激光器理论和实验研究[D]. 石家庄: 河北师范大学, 2019

    HAN H Y. Theoretical and experimental study on tunable ytterbium-doped fiber laser[D]. Shijiazhuang: Hebei Normal University, 2019. (in Chinese)
    [8]
    HIDEUR A, CHARTIER T, Ö ZKUL C, et al. All-fiber tunable ytterbium-doped double-clad fiber ring laser[J]. Optics Letters, 2001, 26(14): 1054-1056. doi: 10.1364/OL.26.001054
    [9]
    AUERBACH M, ADEL P, WANDT D, et al. 10 W widely tunable narrow linewidth double-clad fiber ring laser[J]. Optics Express, 2002, 10(2): 139-144. doi: 10.1364/OE.10.000139
    [10]
    SILVA A, BOLLER K J, LINDSAY I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511
    [11]
    ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823. doi: 10.1364/OE.21.013818
    [12]
    HU J M, ZHANG L, FENG Y. Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 μm[C]. Advanced Solid State Lasers 2014, Optical Society of America, 2014: AM5A.22.
    [13]
    BALASWAMY V, APARANJI S, CHAYRAN G, et al. High-power, independently wavelength, power, and linewidth tunable ytterbium fiber laser[J]. IEEE Photonics Technology Letters, 2019, 31(8): 583-586. doi: 10.1109/LPT.2019.2901504
    [14]
    TIAN J D, XIAO Q R, LI D, et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060–1090 nm[J]. Journal of Lightwave Technology, 2020, 38(6): 1461-1467. doi: 10.1109/JLT.2019.2954536
    [15]
    FU SH G, FAN W D, ZHANG Q, et al. Tunable Yb-doped double-clad fibre laser based on fibre Bragg grating with narrow linewidth[J]. Chinese Physics Letters, 2004, 21(7): 1279-1281. doi: 10.1088/0256-307X/21/7/026
    [16]
    SELVAS R, TORRES-GOMEZ I, MARTINEZ-RIOS A, et al. Wavelength tuning of fiber lasers using multimode interference effects[J]. Optics Express, 2005, 13(23): 9439-9445. doi: 10.1364/OPEX.13.009439
    [17]
    刘胜利, 李乙钢, 高艳丽, 等. 高功率宽调谐范围掺Yb3+光子晶体光纤激光器 [J]. 光学学报,2007,27(9):1663-1667. doi: 10.3321/j.issn:0253-2239.2007.09.024

    LIU SH L, LI Y G, GAO Y L, et al. High-power widely tunable Yb-doped photonic crystal fiber laser[J]. Acta Optica Sinica, 2007, 27(9): 1663-1667. (in Chinese) doi: 10.3321/j.issn:0253-2239.2007.09.024
    [18]
    HILDEBRANDT M, FREDE M, KRACHT D. Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power[J]. Optics Letters, 2007, 32(16): 2345-2347. doi: 10.1364/OL.32.002345
    [19]
    JELGER P, LAURELL F. Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser[J]. Optics Letters, 2007, 32(24): 3501-3503. doi: 10.1364/OL.32.003501
    [20]
    ZEIL P, PASISKEVICIUS V, LAURELL F. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating[J]. Optics Express, 2013, 21(4): 4027-4035. doi: 10.1364/OE.21.004027
    [21]
    FAN Y Y, YE CH CH, WU C Y, et al. High-power narrow-linewidth wavelength-tunable Yb3+-doped double-clad fiber lasers[J]. Proceedings of SPIE, 2008, 7134: 71342H. doi: 10.1117/12.803303
    [22]
    YAGODKIN R, PLATONOV N, YUSIM A, et al. > 1.5kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[J]. Proceedings of SPIE, 2016, 9728: 972807.
    [23]
    LIU Y K, SU R T, MA P F, et al. > 1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 2017, 56(14): 4213-4218. doi: 10.1364/AO.56.004213
    [24]
    王安廷, 李锋, 黄晶, 等. 可调谐单频掺镱光纤DBR激光器[J]. 量子电子学报,2005,22(4):607-611. doi: 10.3969/j.issn.1007-5461.2005.04.024

    WANG A T, LI F, HUANG J, et al. Tunable single-frequency ytterbium-doped fiber BDR laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(4): 607-611. (in Chinese) doi: 10.3969/j.issn.1007-5461.2005.04.024
    [25]
    ENGELBRECHT M, RUEHL A, WANDT D, et al. Single-frequency ytterbium-doped fiber laser with 26 nm tuning range[J]. Optics Express, 2007, 15(8): 4617-4622. doi: 10.1364/OE.15.004617
    [26]
    YIN F F, YANG S G, CHEN H W, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity[J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi: 10.1109/LPT.2011.2166112
    [27]
    WANG K L, LU B L, QI X Y, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer[J]. Laser Physics Letters, 2019, 16(1): 015104. doi: 10.1088/1612-202X/aaf175
    [28]
    马选选, 陆宝乐, 王凯乐, 等. 宽带可调谐单频窄线宽光纤激光器[J]. 光学学报,2019,39(1):0114001. doi: 10.3788/AOS201939.0114001

    MA X X, LU B L, WANG K L, et al. Tunable broadband single-frequency narrow-linewidth fiber laser[J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese) doi: 10.3788/AOS201939.0114001
    [29]
    冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光,2017,44(2):0201005. doi: 10.3788/CJL201744.0201005

    FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi: 10.3788/CJL201744.0201005
    [30]
    LIN C, STOLEN R H, FRENCH W G, et al. A cw tunable near-infrared (1.085–1.175μm) Raman oscillator[J]. Optics Letters, 1977, 1(3): 96-97. doi: 10.1364/OL.1.000096
    [31]
    CIERULLIES S, LIM E L, BRINKMEYER E. Ad-fiber widely tunable Raman laser in a combined linear and sagnac-loop configuration[C]. OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005, IEEE, 2005: 31-33.
    [32]
    BABIN S A, KABLUKOV S I, VLASOV A A. Tunable fiber Bragg gratings for application in tunable fiber lasers[J]. Laser Physics, 2007, 17(11): 1323-1326. doi: 10.1134/S1054660X07110096
    [33]
    BELANGER E, BERNIER M, FAUCHER D, et al. High-power and widely tunable all-fiber Raman laser[J]. Journal of Lightwave Technology, 2008, 26(12): 1696-1701. doi: 10.1109/JLT.2008.922337
    [34]
    ANQUEZ F, COURTADE E, SIVÉRY A, et al. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Optics Express, 2010, 18(22): 22928-22936. doi: 10.1364/OE.18.022928
    [35]
    REKAS M, SCHMIDT O, ZIMER H, et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber[J]. Applied Physics B, 2012, 107(3): 711-716. doi: 10.1007/s00340-012-5052-3
    [36]
    AGRAWAL G P. Nonlinear fiber optics: its history and recent progress [Invited][J]. Journal of the Optical Society of America B, 2011, 28(12): A1-A10. doi: 10.1364/JOSAB.28.0000A1
    [37]
    SONG J X, WU H SH, XU J M, et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 2018, 27(9): 094209. doi: 10.1088/1674-1056/27/9/094209
    [38]
    TURITSYN S K, BABIN S A, CHURKIN D V, et al. Random distributed feedback fibre lasers[J]. Physics Reports, 2014, 542(2): 133-193. doi: 10.1016/j.physrep.2014.02.011
    [39]
    党文佳, 李哲, 卢娜, 等. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学,2021,14(2):264-274. doi: 10.37188/CO.2020-0193

    DANG W J, LI ZH, LU N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. (in Chinese) doi: 10.37188/CO.2020-0193
    [40]
    DU X Y, ZHANG H W, WANG X L, et al. Tunable random distributed feedback fiber laser operating at 1 μm[J]. Applied Optics, 2015, 54(4): 908-911. doi: 10.1364/AO.54.000908
    [41]
    YE J, XU J M, SONG J X, et al. Flexible spectral manipulation property of a high power linearly polarized random fiber laser[J]. Scientific Reports, 2018, 8(1): 2173. doi: 10.1038/s41598-018-20664-y
    [42]
    WU H SH, SONG J X, YE J, et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 2018, 16(6): 061402. doi: 10.3788/COL201816.061402
    [43]
    ZHANG L, JIANG H W, YANG X Z, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 2016, 41(2): 215-218. doi: 10.1364/OL.41.000215
    [44]
    ZHANG L, JIANG H W, YANG X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611. doi: 10.1038/srep42611
    [45]
    ZHANG L, DONG J Y, FENG Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1400106.
    [46]
    BALASWAMY V, APARANJI S, ARUN S, et al.. High power, ultra-widely tunable wavelength, cascaded Raman fiber laser[C]. CLEO: Science and Innovations 2018, Optical Society of America, 2018: SM1K.4.
    [47]
    BALASWAMY V, RAMACHANDRAN S, SUPRADEEPA V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning[J]. Optics Express, 2019, 27(7): 9725-9732. doi: 10.1364/OE.27.009725
    [48]
    李乙钢, 刘伟伟, 傅成鹏, 等. 大功率掺Yb双包层光纤宽带超荧光光源[J]. 光学学报,2001,21(10):1171-1173. doi: 10.3321/j.issn:0253-2239.2001.10.005

    LI Y G, LIU W W, FU CH P, et al. High-power Yb-doped double-cladding fiber broadband superfluorescent source[J]. Acta Optica Sinica, 2001, 21(10): 1171-1173. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.10.005
    [49]
    WANG P, CLARKSON W A. Tunable Yb-doped fibre amplified spontaneous emission source[C]. Conference on Lasers and Electro-Optics 2009, Optical Society of America, 2009: CFM6.
    [50]
    YE J, XU J M, ZHANG Y, et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 2019, 37(13): 3113-3118. doi: 10.1109/JLT.2019.2911007
    [51]
    吴鹏. 高功率掺镱光纤超荧光光源技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019

    WU P. Study on the technology of high-power Yb-doped superfluorescent fiber source[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2019. (in Chinese)
    [52]
    WU P, ZHAO B Y, ZHAO W, et al. Optimization investigation for high-power 1034 nm all-fiber narrowband Yb-doped superfluorescent source[J]. Optics Communications, 2019, 445: 187-192. doi: 10.1016/j.optcom.2019.04.033
    [53]
    WU P, ZHAO B Y, ZHAO W, et al. 30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source[J]. Infrared Physics &Technology, 2018, 92: 363-366.
    [54]
    GAO W, FAN W H, ZHANG Y P, et al. High-power tunable sub-nm narrowband near-diffraction-limited superfluorescent fiber source based on a single-lens spectral filter[J]. Optics Communications, 2020, 463: 125359. doi: 10.1016/j.optcom.2020.125359
    [55]
    JU P, FAN W H, ZHAO B Y, et al. High power, tunable, ultra-narrowband Yb-doped superfluorescent fiber source operating at wavelength less than 1055 nm with 20 nm tuning range[J]. Infrared Physics &Technology, 2020, 111: 103530.
    [56]
    LI ZH, LI G, GAO Q, et al. Kilowatt-level tunable all-fiber narrowband superfluorescent fiber source with 40 nm tuning range[J]. Optics Express, 2020, 28(7): 10378-10385. doi: 10.1364/OE.387405
    [57]
    ZHENG Y, YANG Y F, WANG J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views(1876) PDF downloads(258) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return